Suppr超能文献

大分子在肿瘤早期的蓄积:肿瘤组织与正常组织清除率的巨大差异。

Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues.

作者信息

Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, Maeda H

机构信息

Department of Microbiology, Kumamoto University School of Medicine.

出版信息

Jpn J Cancer Res. 1998 Mar;89(3):307-14. doi: 10.1111/j.1349-7006.1998.tb00563.x.

Abstract

The objective of this study was to investigate the molecular weight (MW) and time-dependence of the phenomenon termed "the enhanced permeability and retention" (EPR) effect in solid tumor, in particular to determine and define the early phase accumulation of macromolecules in tumor and normal tissues and the relationship between blood concentration and tissue clearance. As a model, radioiodinated N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers of MW ranging from 4.5 K to 800 K were administered i.v. to mice bearing sarcoma 180 tumor. Within 10 min all HPMA copolymers accumulated effectively in the tumor regardless of MW (1.0-1.5% of injected dose per g of tumor). However, higher MW copolymers (> 50 K) showed significantly increased tumor accumulation after 6 h, while the lower MW copolymers (< 40 K) were cleared rapidly from tumor tissue due to rapid diffusion back into the bloodstream. Blood clearance was also MW-dependent; the lower MW copolymers displayed rapid clearance, with kidney radioactivity of the copolymers of MW < 20 K representing 24% of injected dose per g kidney at 1 min after i.v. administration. Within 10 min these copolymers passed through the kidney and were excreted in the urine. Higher MW copolymers consistently showed kidney levels of 3-5% dose per g kidney in the early phase with no time-dependent accumulation in kidney. There was also no progressive accumulation in muscle or liver, regardless of polymer MW. These results suggest the "EPR effect" in solid tumor primarily arises from in the difference in clearance rate between the solid tumor and the normal tissues after initial penetration of the polymers into these tissues.

摘要

本研究的目的是调查实体瘤中所谓“增强的渗透与滞留”(EPR)效应的分子量(MW)及时间依赖性,特别是确定并界定大分子在肿瘤组织和正常组织中的早期蓄积情况,以及血药浓度与组织清除率之间的关系。作为模型,将分子量范围为4.5K至800K的放射性碘化N-(2-羟丙基)甲基丙烯酰胺(HPMA)共聚物静脉注射给患有肉瘤180肿瘤的小鼠。在10分钟内,所有HPMA共聚物均有效地蓄积在肿瘤中,而与分子量无关(每克肿瘤组织中为注射剂量的1.0 - 1.5%)。然而,较高分子量的共聚物(> 50K)在6小时后肿瘤蓄积显著增加,而较低分子量的共聚物(< 40K)由于迅速扩散回血液中而从肿瘤组织中快速清除。血液清除率也与分子量有关;较低分子量的共聚物显示出快速清除,静脉注射后1分钟时,分子量< 20K的共聚物在肾脏中的放射性占每克肾脏注射剂量的24%。在10分钟内,这些共聚物通过肾脏并随尿液排出。较高分子量的共聚物在早期阶段肾脏水平始终为每克肾脏3 - 5%剂量,且在肾脏中无时间依赖性蓄积。无论聚合物分子量如何,在肌肉或肝脏中也没有进行性蓄积现象。这些结果表明,实体瘤中的“EPR效应”主要源于聚合物最初渗透进入这些组织后,实体瘤与正常组织在清除率上的差异。

相似文献

1
Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues.
Jpn J Cancer Res. 1998 Mar;89(3):307-14. doi: 10.1111/j.1349-7006.1998.tb00563.x.
6
Long-term biodistribution study of HPMA-ran-LMA copolymers in vivo by means of I-labeling.
Nucl Med Biol. 2018 Mar;58:59-66. doi: 10.1016/j.nucmedbio.2017.12.002. Epub 2017 Dec 16.
8
Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier.
Eur J Cancer. 1995;31A(5):766-70. doi: 10.1016/0959-8049(94)00514-6.
9
Effect of physicochemical modification on the biodistribution and tumor accumulation of HPMA copolymers.
J Control Release. 2005 Dec 10;110(1):103-18. doi: 10.1016/j.jconrel.2005.09.010. Epub 2005 Nov 7.

引用本文的文献

1
Nanomedicine in Cancer Therapeutics: Current Perspectives from Bench to Bedside.
Mol Cancer. 2025 Jun 9;24(1):169. doi: 10.1186/s12943-025-02368-w.
2
HPMA Copolymers: A Versatile Platform for Targeted Peptide Drug Delivery.
Biomolecules. 2025 Apr 17;15(4):596. doi: 10.3390/biom15040596.
3
Recent Advancements of Nanomedicine in Breast Cancer Surgery.
Int J Nanomedicine. 2024 Dec 31;19:14143-14169. doi: 10.2147/IJN.S494364. eCollection 2024.
4
Epithelial-Mesenchymal Plasticity and Epigenetic Heterogeneity in Cancer.
Cancers (Basel). 2024 Sep 27;16(19):3289. doi: 10.3390/cancers16193289.
5
Recent advances in targeted drug delivery systems for multiple myeloma.
J Control Release. 2024 Dec;376:215-230. doi: 10.1016/j.jconrel.2024.10.003. Epub 2024 Oct 12.
6
Nanomedicine in cancer therapy.
Signal Transduct Target Ther. 2023 Aug 7;8(1):293. doi: 10.1038/s41392-023-01536-y.
7
Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors.
Int J Mol Sci. 2023 Jun 13;24(12):10082. doi: 10.3390/ijms241210082.
8
HPMA copolymer-collagen hybridizing peptide conjugates targeted to breast tumor extracellular matrix.
J Control Release. 2023 Jan;353:278-288. doi: 10.1016/j.jconrel.2022.10.017. Epub 2022 Dec 1.

本文引用的文献

1
SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy.
Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):169-85. doi: 10.1016/s0169-409x(00)00134-4.
3
Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth.
Cancer. 1996 Apr 15;77(8 Suppl):1598-604. doi: 10.1002/(SICI)1097-0142(19960415)77:8<1598::AID-CNCR27>3.0.CO;2-U.
9
Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier.
Eur J Cancer. 1995;31A(5):766-70. doi: 10.1016/0959-8049(94)00514-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验