Suppr超能文献

Genomic difference analysis by two-dimensional DNA fingerprinting reveals typical changes in human low-grade gliomas.

作者信息

Marczinek K, Hampe J, Uhlmann K, Thiel G, Barth I, Mrowka R, Vogel S, Nürnberg P

机构信息

Institut für Medizinische Genetik, Universitätsklinikum Charité, Berlin, Germany.

出版信息

Glia. 1998 Jun;23(2):130-8. doi: 10.1002/(sici)1098-1136(199806)23:2<130::aid-glia4>3.0.co;2-a.

Abstract

Cytogenetic and molecular analyses such as allelotyping studies have revealed several genetic changes typical for human glial neoplasms. However, most studies to date have involved malignant gliomas and thus are likely to reflect late events of tumor progression. To elucidate the initial events of glial tumor growth, we performed a genome-wide search for genetic alterations in the DNA of 43 low-grade gliomas as compared to the constitutional DNA of the patients' peripheral blood leucocytes using the two-dimensional (2D) DNA fingerprint approach. Reliable results were obtained for 28 blood/tumor sample pairs (13 astrocytomas, 9 pilocytic astrocytomas, 1 oligodendroglioma, 3 oligoastrocytomas, and 2 ependymomas). DNA was digested with the restriction enzyme HaeIII and the resulting fragments were separated on 2D gels according to size and sequence in the first and second dimensions, respectively. Patterns of hundreds of spots were generated by hybridization with four different mini- and microsatellite core probes. A total of 655 to 1,122 spots could be visualized per sample. Comparison of blood and tumor spot patterns revealed two to 11 reproducible changes per patient. Most of the differences were spot losses (77.1%), while the others appeared to be gains or amplifications. Exactly the same changes were found in tumor recurrences which lacked histological signs of progression. When comparing different patients, many of the affected spots tended to cluster in particular areas of the gel as revealed by computer-aided comparison of all spot patterns. Eleven different spot clusters were identified which may correspond to several major deletion targets. This study provides the basis for the future molecular cloning of the candidate tumor suppressor genes affected by the common spot losses and will allow new insights into the genetic mechanisms of glial tumorigenesis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验