Suppr超能文献

视网膜下丘脑束中基于维生素B2的蓝光光感受器作为哺乳动物昼夜节律时钟设定的光活性色素。

Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals.

作者信息

Miyamoto Y, Sancar A

机构信息

Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.

出版信息

Proc Natl Acad Sci U S A. 1998 May 26;95(11):6097-102. doi: 10.1073/pnas.95.11.6097.

Abstract

In mammals the retina contains photoactive molecules responsible for both vision and circadian photoresponse systems. Opsins, which are located in rods and cones, are the pigments for vision but it is not known whether they play a role in circadian regulation. A subset of retinal ganglion cells with direct projections to the suprachiasmatic nucleus (SCN) are at the origin of the retinohypothalamic tract that transmits the light signal to the master circadian clock in the SCN. However, the ganglion cells are not known to contain rhodopsin or other opsins that may function as photoreceptors. We have found that the two blue-light photoreceptors, cryptochromes 1 and 2 (CRY1 and CRY2), recently discovered in mammals are specifically expressed in the ganglion cell and inner nuclear layers of the mouse retina. In addition, CRY1 is expressed at high level in the SCN and oscillates in this tissue in a circadian manner. These data, in conjunction with the established role of CRY2 in photoperiodism in plants, lead us to propose that mammals have a vitamin A-based photopigment (opsin) for vision and a vitamin B2-based pigment (cryptochrome) for entrainment of the circadian clock.

摘要

在哺乳动物中,视网膜含有负责视觉和昼夜节律光反应系统的光活性分子。视蛋白位于视杆细胞和视锥细胞中,是视觉色素,但它们是否在昼夜节律调节中发挥作用尚不清楚。一部分直接投射到视交叉上核(SCN)的视网膜神经节细胞是视网膜下丘脑束的起源,该束将光信号传递到SCN中的主昼夜节律时钟。然而,尚不清楚神经节细胞是否含有可能作为光感受器的视紫红质或其他视蛋白。我们发现,最近在哺乳动物中发现的两种蓝光光感受器,隐花色素1和2(CRY1和CRY2),在小鼠视网膜的神经节细胞层和内核层中特异性表达。此外,CRY1在SCN中高水平表达,并在该组织中以昼夜节律的方式振荡。这些数据,结合CRY2在植物光周期现象中的既定作用,使我们提出,哺乳动物有基于维生素A的视觉光色素(视蛋白)和基于维生素B2的色素(隐花色素)用于昼夜节律时钟的校准。

相似文献

4
Circadian photoreception in humans and mice.人类和小鼠的昼夜节律光感受
Mol Interv. 2002 Dec;2(8):484-92. doi: 10.1124/mi.2.8.484.
7
Environmental stimulus perception and control of circadian clocks.环境刺激感知与生物钟的调控
Curr Opin Neurobiol. 2002 Aug;12(4):359-65. doi: 10.1016/s0959-4388(02)00347-1.

引用本文的文献

5
Circadian rhythm disruption and endocrine-related tumors.昼夜节律紊乱与内分泌相关肿瘤。
World J Clin Oncol. 2024 Jul 24;15(7):818-834. doi: 10.5306/wjco.v15.i7.818.
7
Circadian Gene Variants in Diseases.疾病中的昼夜节律基因变体
Genes (Basel). 2023 Aug 27;14(9):1703. doi: 10.3390/genes14091703.
8
Cryptochromes in mammals: a magnetoreception misconception?哺乳动物中的隐花色素:一种磁感受的误解?
Front Physiol. 2023 Aug 21;14:1250798. doi: 10.3389/fphys.2023.1250798. eCollection 2023.
9
Chronotherapeutics for Solid Tumors.实体瘤的时辰治疗学
Pharmaceutics. 2023 Jul 26;15(8):2023. doi: 10.3390/pharmaceutics15082023.

本文引用的文献

2
Regulation of flowering time by Arabidopsis photoreceptors.拟南芥光感受器对开花时间的调控。
Science. 1998 Feb 27;279(5355):1360-3. doi: 10.1126/science.279.5355.1360.
4
Extraocular circadian phototransduction in humans.人类眼外昼夜光转导
Science. 1998 Jan 16;279(5349):396-9. doi: 10.1126/science.279.5349.396.
6
Multiple clocks keep time in fruit fly tissues.多个生物钟在果蝇组织中计时。
Science. 1997 Nov 28;278(5343):1560-1. doi: 10.1126/science.278.5343.1560.
8
Twilight times: light and the circadian system.黄昏时分:光线与昼夜节律系统
Photochem Photobiol. 1997 Nov;66(5):549-61. doi: 10.1111/j.1751-1097.1997.tb03188.x.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验