Suppr超能文献

向黄素蛋白NifL(一种氧化还原感应转录调节因子)提供电子。

Electron donation to the flavoprotein NifL, a redox-sensing transcriptional regulator.

作者信息

Macheroux P, Hill S, Austin S, Eydmann T, Jones T, Kim S O, Poole R, Dixon R

机构信息

Nitrogen Fixation Laboratory, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, Norfolk, UK.

出版信息

Biochem J. 1998 Jun 1;332 ( Pt 2)(Pt 2):413-9. doi: 10.1042/bj3320413.

Abstract

Transcriptional control of the nitrogen fixation (nif) genes in response to oxygen in Azotobacter vinelandii is mediated by nitrogen fixation regulatory protein L (NifL), a regulatory flavoprotein that modulates the activity of the transcriptional activator nitrogen fixation regulatory protein A (NifA). CD spectra of purified NifL indicate that FAD is bound to NifL in an asymmetric environment and the protein is predominantly alpha-helical. The redox potential of NifL is -226 mV at pH 8 as determined by the enzymic reduction of NifL by xanthine oxidase/xanthine in the presence of appropriate mediators. The reduction of NifL by xanthine oxidase prevented NifL from acting as an inhibitor of NifA. In the absence of electron mediators NifL could also be reduced by Escherichia coli flavohaemoprotein (Hmp) with NADH as reductant. Hmp contains a globin-like domain with haem B as prosthetic group and an FAD-containing oxidoreductase module. The carboxyferrohaem form of Hmp was competent to reduce NifL, suggesting that electron donation to NifL originates from the flavin in Hmp rather than by direct electron transfer from the haem. Spinach ferredoxin:NAD(P) oxidoreductase, which adopts a folding similar to the FAD- and NAD-binding domains of Hmp, also reduced NifL with NADH as reductant. Re-oxidation of NifL occurs rapidly in the presence of air, raising the possibility that NifL might sense intracellular oxygen. We propose a physiological redox cycle in which the oxidation of NifL by oxygen and hence the activation of its inhibitory properties occurs rapidly, in contrast with the switch from the active to the reduced form of NifL, which occurs more slowly.

摘要

棕色固氮菌中固氮(nif)基因对氧气响应的转录控制由固氮调节蛋白L(NifL)介导,NifL是一种调节性黄素蛋白,可调节转录激活因子固氮调节蛋白A(NifA)的活性。纯化的NifL的圆二色光谱表明,黄素腺嘌呤二核苷酸(FAD)在不对称环境中与NifL结合,且该蛋白主要为α螺旋结构。在合适的介质存在下,通过黄嘌呤氧化酶/黄嘌呤对NifL进行酶促还原测定,NifL在pH 8时的氧化还原电位为-226毫伏。黄嘌呤氧化酶对NifL的还原作用可防止NifL作为NifA的抑制剂发挥作用。在没有电子介质的情况下,大肠杆菌黄素血红蛋白(Hmp)也能以烟酰胺腺嘌呤二核苷酸(NADH)作为还原剂还原NifL。Hmp包含一个以血红素B作为辅基的类珠蛋白结构域和一个含FAD的氧化还原酶模块。Hmp的羧基亚铁血红素形式能够还原NifL,这表明向NifL的电子供体来自Hmp中的黄素,而非血红素的直接电子转移。菠菜铁氧还蛋白:NAD(P)氧化还原酶,其折叠方式与Hmp的FAD和NAD结合结构域相似,也能以NADH作为还原剂还原NifL。在空气中,NifL会迅速重新氧化,这增加了NifL可能感知细胞内氧气的可能性。我们提出了一个生理氧化还原循环,其中氧气对NifL的氧化以及其抑制特性的激活迅速发生,这与NifL从活性形式转变为还原形式的过程形成对比,后者发生得更为缓慢。

相似文献

1
Electron donation to the flavoprotein NifL, a redox-sensing transcriptional regulator.
Biochem J. 1998 Jun 1;332 ( Pt 2)(Pt 2):413-9. doi: 10.1042/bj3320413.
6
Haem, flavin and oxygen interactions in Hmp, a flavohaemoglobin from Escherichia coli.
Biochem Soc Trans. 1994 Aug;22(3):709-13. doi: 10.1042/bst0220709.
7
NifL of Klebsiella pneumoniae: redox characterization in relation to the nitrogen source.
Biochim Biophys Acta. 1999 May 18;1431(2):462-70. doi: 10.1016/s0167-4838(99)00075-8.
10

引用本文的文献

1
Nitrogen-Fixing Gamma Proteobacteria -A Blueprint for Nitrogen-Fixing Plants?
Microorganisms. 2024 Oct 18;12(10):2087. doi: 10.3390/microorganisms12102087.
2
Structural insights into redox signal transduction mechanisms in the control of nitrogen fixation by the NifLA system.
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2302732120. doi: 10.1073/pnas.2302732120. Epub 2023 Jul 17.
3
Disrupting hierarchical control of nitrogen fixation enables carbon-dependent regulation of ammonia excretion in soil diazotrophs.
PLoS Genet. 2021 Jun 10;17(6):e1009617. doi: 10.1371/journal.pgen.1009617. eCollection 2021 Jun.
4
How Bacterial Redox Sensors Transmit Redox Signals via Structural Changes.
Antioxidants (Basel). 2021 Mar 24;10(4):502. doi: 10.3390/antiox10040502.
5
structural homology modeling of nif A protein of rhizobial strains in selective legume plants.
J Genet Eng Biotechnol. 2018 Dec;16(2):731-737. doi: 10.1016/j.jgeb.2018.06.006. Epub 2018 Jul 7.
6
Bacterial Energy Sensor Aer Modulates the Activity of the Chemotaxis Kinase CheA Based on the Redox State of the Flavin Cofactor.
J Biol Chem. 2016 Dec 9;291(50):25809-25814. doi: 10.1074/jbc.C116.757492. Epub 2016 Nov 1.
7
Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms.
Mol Microbiol. 2010 Dec;78(6):1379-92. doi: 10.1111/j.1365-2958.2010.07414.x. Epub 2010 Oct 18.
9
Flavin redox switching of protein functions.
Antioxid Redox Signal. 2011 Mar 15;14(6):1079-91. doi: 10.1089/ars.2010.3417. Epub 2010 Oct 28.
10
Electron paramagnetic resonance and Mössbauer spectroscopy of intact mitochondria from respiring Saccharomyces cerevisiae.
J Biol Inorg Chem. 2007 Sep;12(7):1029-53. doi: 10.1007/s00775-007-0275-1. Epub 2007 Jul 31.

本文引用的文献

2
Mechanism of Molybdenum Nitrogenase.
Chem Rev. 1996 Nov 7;96(7):2983-3012. doi: 10.1021/cr950055x.
3
Structural Basis of Biological Nitrogen Fixation.
Chem Rev. 1996 Nov 7;96(7):2965-2982. doi: 10.1021/cr9500545.
6
PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox.
Trends Biochem Sci. 1997 Sep;22(9):331-3. doi: 10.1016/s0968-0004(97)01110-9.
7
The oxygen-responsive transcriptional regulator FNR of Escherichia coli: the search for signals and reactions.
Mol Microbiol. 1997 Jul;25(2):205-10. doi: 10.1046/j.1365-2958.1997.4731841.x.
8
A signal transducer for aerotaxis in Escherichia coli.
J Bacteriol. 1997 Jun;179(12):4075-9. doi: 10.1128/jb.179.12.4075-4079.1997.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验