Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom.
Department of Metabolic Biology, John Innes Centre, Norwich, United Kingdom.
PLoS Genet. 2021 Jun 10;17(6):e1009617. doi: 10.1371/journal.pgen.1009617. eCollection 2021 Jun.
The energetic requirements for biological nitrogen fixation necessitate stringent regulation of this process in response to diverse environmental constraints. To ensure that the nitrogen fixation machinery is expressed only under appropriate physiological conditions, the dedicated NifL-NifA regulatory system, prevalent in Proteobacteria, plays a crucial role in integrating signals of the oxygen, carbon and nitrogen status to control transcription of nitrogen fixation (nif) genes. Greater understanding of the intricate molecular mechanisms driving transcriptional control of nif genes may provide a blueprint for engineering diazotrophs that associate with cereals. In this study, we investigated the properties of a single amino acid substitution in NifA, (NifA-E356K) which disrupts the hierarchy of nif regulation in response to carbon and nitrogen status in Azotobacter vinelandii. The NifA-E356K substitution enabled overexpression of nitrogenase in the presence of excess fixed nitrogen and release of ammonia outside the cell. However, both of these properties were conditional upon the nature of the carbon source. Our studies reveal that the uncoupling of nitrogen fixation from its assimilation is likely to result from feedback regulation of glutamine synthetase, allowing surplus fixed nitrogen to be excreted. Reciprocal substitutions in NifA from other Proteobacteria yielded similar properties to the A. vinelandii counterpart, suggesting that this variant protein may facilitate engineering of carbon source-dependent ammonia excretion amongst diverse members of this family.
生物固氮的能量需求要求严格调节该过程,以响应各种环境限制。为了确保氮固定机制仅在适当的生理条件下表达,专门的 NifL-NifA 调节系统在变形菌中普遍存在,在整合氧气、碳和氮状态的信号以控制氮固定(nif)基因的转录中起着至关重要的作用。对驱动 nif 基因转录控制的复杂分子机制的更深入了解可能为与谷物相关的固氮生物的工程设计提供蓝图。在这项研究中,我们研究了单个氨基酸取代(NifA-E356K)在根瘤菌中对碳和氮状态的 nif 调节层次结构的影响。NifA-E356K 取代使在过量固定氮存在下氮酶的过表达和氨在细胞外释放成为可能。然而,这两种特性都取决于碳源的性质。我们的研究表明,氮固定与其同化的解耦可能是由于谷氨酰胺合成酶的反馈调节,从而允许过剩的固定氮被排出。来自其他变形菌的 NifA 的相互取代产生了与根瘤菌对应物相似的特性,这表明这种变体蛋白可能有助于在该家族的不同成员中进行依赖碳源的氨排泄工程设计。