Moutard I, Gressier B, Brunet C, Dine T, Luyckx M, Templier F, Cazin M, Cazin J C
Laboratoire de Pharmacologie, Pharmacocinétique et Pharmacie Clinique, Faculté des Sciences Pharmaceutiques et Biologiques, Lille, France.
Pharmacol Res. 1998 Mar;37(3):197-201. doi: 10.1006/phrs.1998.0292.
PMNs are a major component of body defense against microbial invasion, involving reactive oxygen species in great quantity, which could benefit from antibiotic therapy. Recently, possible antibiotic effects on phagocyte functions (impairment or stimulation of reactive oxygen species production) were studied. In our study, an in vitro evaluation was made on macrolide activity on phagocyte respiratory burst functions, using assay of superoxide anion (O2.-) in response to four stimuli systems: N-formyl Met-Leu-Phe (fMLP), an analogue of bacterial chemotactic factors; 4 beta-phorbol 12-myristate 13-acetate (PMA), a direct activator of protein kinase C (PKC); calcium ionophore (A23187), which acts directly on calcium influx; and a bacterial strain, Staphylococcus aureus. We have shown that spiramycin, at therapeutic plasma concentrations, increased O2.- generation by bacteria and fMLP-stimulated PMNs, with rate of 26% for 1 microgram ml-1 and 34% for 5 micrograms ml-1, respectively. This pro-oxidant effect, however, weaker, was observed when PMNs were stimulated by PMA. A weak anti-oxidant effect was observed with A23187. For higher concentrations, spiramycin decreased strongly O2.- production, with IC50 values of 74 micrograms ml-1, 154 micrograms ml-1, 296 micrograms ml-1 and 400 micrograms ml-1 when PMNs were stimulated with bacteria, A23187, fMLP and PMA, respectively. The effect of spiramycin seemed to result from an intracellular mechanism by intervention of PMN oxidative metabolism (NADPH-oxidase activation), rather than a simple chemical interaction, because no effect has been observed in acellular models. For higher spiramycin concentrations, the decrease of O2.- production observed could not be taken into consideration because this concentration was not used in therapy. The enhanced of O2.- production observed could be used in therapy, so as to increase PMNs bactericidal activity.
中性粒细胞是机体抵御微生物入侵的主要成分,大量参与活性氧的产生,这可能得益于抗生素治疗。最近,人们研究了抗生素对吞噬细胞功能的可能影响(活性氧产生的损害或刺激)。在我们的研究中,使用超氧阴离子(O2.-)测定法,针对四种刺激系统:细菌趋化因子类似物N-甲酰甲硫氨酰-亮氨酰-苯丙氨酸(fMLP);蛋白激酶C(PKC)的直接激活剂4β-佛波醇12-肉豆蔻酸酯13-乙酸酯(PMA);直接作用于钙内流的钙离子载体(A23187);以及一种细菌菌株金黄色葡萄球菌,对大环内酯类药物对吞噬细胞呼吸爆发功能的活性进行了体外评估。我们已经表明,在治疗性血浆浓度下,螺旋霉素可增加细菌和fMLP刺激的中性粒细胞产生O2.-的量,对于1微克/毫升和5微克/毫升的浓度,增加率分别为26%和34%。然而,当PMA刺激中性粒细胞时,这种促氧化作用较弱。在用A23187刺激时观察到微弱的抗氧化作用。对于更高的浓度,螺旋霉素强烈降低O2.-的产生,当用细菌、A23187、fMLP和PMA刺激中性粒细胞时,IC50值分别为74微克/毫升、154微克/毫升、296微克/毫升和400微克/毫升。螺旋霉素的作用似乎是通过中性粒细胞氧化代谢的干预(NADPH氧化酶激活)的细胞内机制产生结果,而不是简单的化学相互作用,因为在无细胞模型中未观察到作用。对于更高的螺旋霉素浓度,观察到的O2.-产生的降低不能被考虑,因为该浓度在治疗中未使用。观察到的O2.-产生的增强可用于治疗,以增加中性粒细胞的杀菌活性。