Suppr超能文献

Regulation of neuroprotective action of vasoactive intestinal peptide in the murine developing brain by protein kinase C and mitogen-activated protein kinase cascades: in vivo and in vitro studies.

作者信息

Gressens P, Marret S, Martin J L, Laquerrière A, Lombet A, Evrard P

机构信息

Service de Neuropédiatrie and INSERM CRI 97-01, Hôpital Robert-Debré, Paris, France.

出版信息

J Neurochem. 1998 Jun;70(6):2574-84. doi: 10.1046/j.1471-4159.1998.70062574.x.

Abstract

Intracerebral administration of the excitotoxin ibotenate to newborn mice induces white matter lesions mimicking periventricular leukomalacia, the most frequent brain lesion occurring in premature human babies. In this model, coinjection of vasoactive intestinal peptide prevents white matter lesions. In the present study, coadministration of ibotenate, vasoactive intestinal peptide, and selective transduction inhibitors showed that protein kinase C and mitogen-associated protein kinase pathways were critical for neuroprotection. In vivo and in vitro immunocytochemistry revealed that vasoactive intestinal peptide activated protein kinase C in astrocytes and neurons, and mitogen-associated protein kinase in neurons. In vitro neuronal transduction activation was indirect and required medium conditioned by astrocytes in which protein kinase C had been activated by vasoactive intestinal peptide. Although vasoactive intestinal peptide did not prevent the initial in vivo appearance of white matter lesion, it promoted a secondary repair of this lesion with axonal regrowth. Through protein kinase C activation, vasoactive intestinal peptide also prevented ibotenate-induced white matter astrocyte death. These data support the following hypothetical model: Vasoactive intestinal peptide activates protein kinase C in astrocytes, which promotes astrocytic survival and release of soluble factors; these released factors activate neuronal mitogen-associated protein kinase and protein kinase C, which will permit axonal regrowth.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验