Smirnova E A, Bajer A S
Biology Faculty, Moscow State University, Russia.
Cell Motil Cytoskeleton. 1998;40(1):22-37. doi: 10.1002/(SICI)1097-0169(1998)40:1<22::AID-CM3>3.0.CO;2-H.
We analyzed transformation of the interphase microtubular cytoskeleton into the prophase spindle and followed the pattern of spindle axis determination. Microtubules in endosperm of the higher plant Haemanthus (Scadoxus) were stained by the immunogold and immunogold silver-enhanced methods. Basic structural units involved in spindle morphogenesis were "microtubule converging centers." We emphasized the importance of relative independence of chromosomal and microtubular cycles, and the influence of these cycles on the progress of mitosis. Cells with moderately desynchronized cycles were functional, but extreme desynchronization led to aberrant mitosis. There were three distinct phases of spindle development. The first one comprised interphase and early to mid-prophase. During this phase, the interphase microtubule meshwork radiating from the nuclear surface into the cytoplasm rearranged and formed a dense microtubule cage around the nucleus. The second phase comprised mid to late prophase, and resulted in the formation of normal (bipolar) or transitory aberrant (apolar or multipolar) prophase spindles. The third phase comprised late prophase with prometaphase. The onset of prometaphase was accompanied by a rapid association of microtubule converging centers with kinetochores. In this stage aberrant spindles transformed invariably into bipolar ones. Lateral association of a few bipolar kinetochore fibers at early prometaphase established the core of the bipolar spindle and its alignment. We concluded that (1) spindle formation is a largely independent microtubular process modified by the chromosomal/kinetochore cycle; and (2) the initial polarity of the spindle is established by microtubule converging centers, which are a functional substitute of the centrosome/MTOC. We believe that the dynamics of microtubule converging centers is an expression of microtubule self-organization driven by motor proteins as proposed by Mitchison [1992: Philos. Trans. R. Soc. Lond. B. 336:99].
我们分析了间期微管细胞骨架向前期纺锤体的转变,并追踪了纺锤体轴确定的模式。高等植物文殊兰(刺眼花属)胚乳中的微管用免疫金和免疫金银增强法进行染色。参与纺锤体形态发生的基本结构单位是“微管汇聚中心”。我们强调了染色体周期和微管周期相对独立性的重要性,以及这些周期对有丝分裂进程的影响。周期适度不同步的细胞是有功能的,但极端不同步会导致异常有丝分裂。纺锤体发育有三个不同阶段。第一个阶段包括间期和前期早期到中期。在此阶段,从核表面辐射到细胞质中的间期微管网络重新排列,并在核周围形成密集的微管笼。第二个阶段包括前期中期到后期,导致形成正常(双极)或短暂异常(无极或多极)的前期纺锤体。第三个阶段包括前期后期和前中期。前中期的开始伴随着微管汇聚中心与动粒的快速结合。在这个阶段,异常纺锤体总是会转变为双极纺锤体。前中期早期少数双极动粒纤维的侧向结合确立了双极纺锤体的核心及其排列。我们得出结论:(1)纺锤体形成在很大程度上是一个由染色体/动粒周期修饰的独立微管过程;(2)纺锤体最初的极性由微管汇聚中心确立,微管汇聚中心是中心体/微管组织中心的功能替代物。我们认为,微管汇聚中心的动态变化是由米切森[1992年:《英国皇家学会哲学学报》B辑336:99]提出的由驱动蛋白驱动的微管自组织的一种表现。