Suppr超能文献

Nitric oxide-mediated renal epithelial cell injury during hypoxia and reoxygenation.

作者信息

Paller M S, Weber K, Patten M

机构信息

Department of Medicine, University of Minnesota, Minneapolis 55455, USA.

出版信息

Ren Fail. 1998 May;20(3):459-69. doi: 10.3109/08860229809045135.

Abstract

The potent endothelial-derived vasodilator nitric oxide (NO) has been identified as a protective agent in acute renal failure. However, some recent studies have suggested a detrimental effect of NO on rat proximal tubules exposed to hypoxia and reoxygenation. We determined whether NO metabolites cause intracellular oxidation during hypoxia and reoxygenation and whether this oxidative stress is linked to irreversible cell injury. Primary cultures of rat proximal tubular epithelial cells were studied in a subconfluent stage and subjected to 60 min hypoxia and 30 min reoxygenation. Intracellular oxidation was assessed by monitoring the conversion of nonfluorescent dihydrorhodamine 123 (DHR) to fluorescent rhodamine 123 as a probe for the long-lived oxidant peroxynitrite. Hypoxia and reoxygenation produced a marked increase in cellular generation of oxidant species. Intracellular oxidation of DHR was reduced by approximately 40% when cells were also exposed to the NO synthase inhibitor L-NAME. Oxidation of DHR following hypoxia and reoxygenation was not affected by SOD or DMTU. A combination of SOD and L-NAME was no more effective than L-NAME alone. Hypoxia and reoxygenation produced substantial injury (as LDH release). There was a 40% reduction in LDH release when cells were pretreated with a NO synthase inhibitor. In summary, increased generation of NO capable of inducing intracellular oxidizing reactions and cell death occurred during renal hypoxia and reoxygenation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验