Suppr超能文献

New method to obtain the midplane dose using portal in vivo dosimetry.

作者信息

Boellaard R, Essers M, van Herk M, Mijnheer B J

机构信息

Radiotherapy Department, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Huis, Amsterdam.

出版信息

Int J Radiat Oncol Biol Phys. 1998 May 1;41(2):465-74. doi: 10.1016/s0360-3016(98)00048-0.

Abstract

PURPOSE

The aim of this study was to develop a method to derive the midplane dose [i.e., the two-dimensional (2D) dose distribution in the middle of a patient irradiated with high-energy photon beams] from transmission dose data measured with an electronic portal imaging device (EPID). A prerequisite for this method was that it could be used without additional patient information (i.e., independent of a treatment-planning system). Second, we compared the new method with several existing (conventional) methods that derive the midline dose from entrance and exit dose measurements.

METHODS AND MATERIALS

The proposed method first calculates the 2D contribution of the primary and scattered dose component at the exit side of the patient or phantom from the measured transmission dose. Then, a correction is applied for the difference in contribution for both dose components between exit side and midplane, yielding the midplane dose. To test the method, we performed EPID transmission dose measurements and entrance, midplane, and exit dose measurements using an ionization chamber in homogeneous and symmetrical inhomogeneous phantoms. The various methods to derive the midplane dose were also tested for asymmetrical inhomogeneous phantoms applying two opposing fields. A number of combinations of inhomogeneities (air, cork, and aluminum), phantom thicknesses, field sizes, and a few irregularly shaped fields were investigated, while each experiment was performed in 4-, 8-, and 18-MV open and wedged beams.

RESULTS

Our new method can be used to assess the midplane dose for most clinical situations within 2% relative to ionization chamber measurements. Similar results were found with other methods. In the presence of large asymmetrical inhomogeneities (e.g., lungs), discrepancies of about 8% have been found (for small field sizes) using our transmission dose method, owing to the absence of lateral electron equilibrium. Applying the other methods, differences between predicted and measured midplane doses were even larger, up to 10%. For large field sizes, the agreement between measured and predicted midplane dose was within 3% using our transmission dose method.

CONCLUSIONS

Using our new method, midplane doses were estimated with a similar or higher accuracy compared with existing conventional methods for in vivo dosimetry. The advantage of our new method is that the midplane dose can be determined in the entire (2D) field. With our method, portal in vivo dosimetry is an accurate alternative for conventional in vivo dosimetry.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验