Suppr超能文献

Differential metabolite accumulation may be the cause of strain differences in sensitivity to streptozotocin-induced beta cell death in inbred mice.

作者信息

Cardinal J W, Allan D J, Cameron D P

机构信息

Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia.

出版信息

Endocrinology. 1998 Jun;139(6):2885-91. doi: 10.1210/endo.139.6.6048.

Abstract

Inbred strains of mice vary in their sensitivity to the diabetogenic effects of streptozotocin (STZ). To investigate the basis for this strain difference we exposed islet cells from two strains of mice that differ in sensitivity to the drug. We examined them morphologically and measured islet NAD + NADH content, streptozotocin metabolite accumulation, glucose transport capacity, Glut2 levels and medium nitrite accumulation. C57bl/6J mice were more sensitive to STZ than Balb/c mice as judged by the extent of pancreatic insulin depletion and beta cell death, in vivo and in vitro. The mode of cell death was necrosis. After a 30-min in vitro exposure to the drug the more sensitive C57bl/6J islets contained higher levels of streptozotocin metabolites and less NAD + NADH than the more resistant Balb/c islets. The lack of any strain differences in 3-O-methyl glucose transport, Glut2 levels and medium nitrite accumulation suggested that STZ transport and nitric oxide metabolism were not responsible for differences in STZ sensitivity and metabolite accumulation. Thus the strain differences in STZ sensitivity appears to be due to intracellular events within the beta cell occurring after STZ transport and before NAD + NADH depletion. STZ metabolite accumulation appears to be associated with STZ sensitivity. Further studies are warranted to determine if differential STZ metabolite accumulation is responsible for STZ sensitivity.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验