Suppr超能文献

用转运区室与伽马分布函数对药效学中的信号转导过程进行建模。

Transit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics.

作者信息

Sun Y N, Jusko W J

机构信息

Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo, Buffalo, New York 14260, USA.

出版信息

J Pharm Sci. 1998 Jun;87(6):732-7. doi: 10.1021/js970414z.

Abstract

Delayed effects for pharmacodynamic responses can be observed for many signal transduction processes. Three approaches are summarized in this report to describe such effects caused by cascading steps: stochastic process model, gamma distribution function, and transit compartment model. The gamma distribution function, a probability density function of the waiting time for the final step in a stochastic process model, is a function of time with two variables: number of compartments N, and the expected number of compartments occurring per unit time k. The parameter k is equal to 1/tau, where tau is the mean transit time in the stochastic process model. Effects of N and k on the gamma distribution function were examined. The transit compartment model can link the pharmacokinetic profile of the tested compound, receptor occupancy, and cascade steps for the signal transduction process. Time delays are described by numbers of steps, the mean transit time tau, and the amplification or suppression of the process as characterized by a power coefficient gamma. The effects of N, tau, and gamma on signal transduction profiles are shown. The gamma distribution function can be utilized to estimate N and k values when the final response profile is available, but it is less flexible than transit compartments when dose-response relationships, receptor dynamics, and efficiency of the transduction process are of concern. The transit compartment model is useful in pharmacokinetic/pharmacodynamic modeling to describe precursor/product relationships in signal transduction process.

摘要

许多信号转导过程都可观察到药效学反应的延迟效应。本报告总结了三种方法来描述由级联步骤引起的此类效应:随机过程模型、伽马分布函数和转运室模型。伽马分布函数是随机过程模型中最后一步等待时间的概率密度函数,它是一个关于时间的函数,有两个变量:隔室数N和单位时间内发生的隔室预期数k。参数k等于1/τ,其中τ是随机过程模型中的平均转运时间。研究了N和k对伽马分布函数的影响。转运室模型可以将受试化合物的药代动力学特征、受体占有率和信号转导过程的级联步骤联系起来。时间延迟由步骤数、平均转运时间τ以及以幂系数γ表征的过程放大或抑制来描述。展示了N、τ和γ对信号转导特征的影响。当最终反应特征可用时,伽马分布函数可用于估计N和k值,但在关注剂量-反应关系、受体动力学和转导过程效率时,它不如转运室灵活。转运室模型在药代动力学/药效学建模中对于描述信号转导过程中的前体/产物关系很有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验