Ossola J O, Tomaro M L
Departamento de Química Biológica, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Argentina.
Int J Biochem Cell Biol. 1998 Feb;30(2):285-92. doi: 10.1016/s1357-2725(97)00109-x.
Heme oxygenase is a key enzyme for heme catabolism and catalyzes the oxidative degradation of heme to form biliverdin IX alpha, an immediate precursor of bilirubin. In order to shed light on the mechanism by which UVA radiation causes oxidative damage, the relationship between heme oxygenase induction and oxidative stress was studied. HO-1 activity, lipid peroxidation and generation of active oxygen species (H2O2) were measured in rat liver exposed to UVA radiation. Besides, soluble and enzymatic antioxidant defenses (GSH, SOD, CAT and GSH-Px) were determined, while bilirubin antioxidant capacity was also evaluated. UVA radiation markedly increased both lipid peroxidation (180% +/- 7; S.E.M., n = 9 over control value of 0.1 +/- 0.01 nmol MDA/min per mg prot.) and steady state concentration of hydrogen peroxide (4 +/- 0.03 microM; S.E.M., n = 9) 3 h after treatment. At the same time, GSH content decreased to 3.6 +/- 0.2 mumol/g liver (S.E.M., n = 9) increasing thereafter. Antioxidant enzymes reached minimum values 6 h after UVA treatment (SOD: 7.2 +/- 0.2 U/mg protein, CAT: 7.8 +/- 0.2 pmol/mg protein, GSH-Px: 0.088 +/- 0.004 U/mg protein; S.E.M., n = 9), starting to increase 12 h after irradiation. HO-1 induction was observed 6 h after UVA irradiation, reaching a maximum value of 2.5 +/- 0.03 U/mg protein (S.E.M., n = 9) 12 h after treatment, and then declined until it reached control levels 24 h after exposure. Administration of bilirubin 2 h before UVA irradiation, entirely prevented HO-1 induction, the increase in MDA content and the decrease in GSH levels. This study shows that UVA irradiation leads to oxidative stress as evidenced by increased MDA content and H2O2 steady state levels, and depletion of GSH, SOD, CAT and GSH-Px. All these changes produced HO-1 induction. It is concluded that the induction of this enzyme could be a response to oxidative stress, since bilirubin can act as a physiological antioxidant.
血红素加氧酶是血红素分解代谢的关键酶,催化血红素的氧化降解形成胆绿素IXα,即胆红素的直接前体。为了阐明紫外线A辐射导致氧化损伤的机制,研究了血红素加氧酶诱导与氧化应激之间的关系。在暴露于紫外线A辐射的大鼠肝脏中测量了HO-1活性、脂质过氧化和活性氧物质(H2O2)的产生。此外,还测定了可溶性和酶促抗氧化防御(谷胱甘肽、超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶),同时也评估了胆红素的抗氧化能力。紫外线A辐射在处理后3小时显著增加了脂质过氧化(180%±7;标准误,n = 9,相对于对照值0.1±0.01 nmol丙二醛/分钟每毫克蛋白)和过氧化氢的稳态浓度(4±0.03微摩尔;标准误,n = 9)。同时,谷胱甘肽含量降至3.6±0.2微摩尔/克肝脏(标准误,n = 9),此后增加。抗氧化酶在紫外线A处理后6小时达到最小值(超氧化物歧化酶:7.2±0.2 U/毫克蛋白,过氧化氢酶:7.8±0.2皮摩尔/毫克蛋白,谷胱甘肽过氧化物酶:0.088±0.004 U/毫克蛋白;标准误,n = 9),照射后12小时开始增加。在紫外线A照射后6小时观察到HO-1诱导,处理后12小时达到最大值2.5±0.03 U/毫克蛋白(标准误,n = 9),然后下降,直到暴露后24小时达到对照水平。在紫外线A照射前2小时给予胆红素,完全阻止了HO-1诱导、丙二醛含量的增加和谷胱甘肽水平的降低。这项研究表明,紫外线A照射导致氧化应激,表现为丙二醛含量和H2O2稳态水平增加,以及谷胱甘肽、超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶的消耗。所有这些变化都导致了HO-1诱导。得出的结论是,这种酶的诱导可能是对氧化应激的一种反应,因为胆红素可以作为一种生理性抗氧化剂。