Bendel U
Institut für Physiologie der Medizinischen Fakultät Charité, Humboldt-Universität zu Berlin.
Biomed Tech (Berl). 1998 Apr;43(4):100-6. doi: 10.1515/bmte.1998.43.4.100.
A dynamic arterial vessel model with an associated flow resistance is deduced in Laplace-transformed form based on a linear dynamic muscle model and a laminar-instationary blood stream with accompanying parameters (such as elasticity, actin myosin overlap, movement resistances, blood stream resistance and blood mass). In addition, a flow resistance is connected at the outlet of the vessel. With the pulse pressure course as the given input, the Laplace-transformed definition enables, in a clearly arranged manner, the derivation of differential equations of several variables of the arterial pulse process--the changes of blood inflow, outflow, storage flow or volume, of the internal vessel pressure, of the output pressure, of the various pressure differences over the vessel, of the vessel wall tension, of the vessel radius and the vessel wall thickness. The derivations yield the order and the structures of these differential equations. The coefficients of these equations are complicated functions (sums and products) of the smooth-muscle, blood-flow and geometrical parameters. Only in special cases--with an open or the closed vessel at the outlet--are the coefficients simple functions of the vessels parameters.
基于线性动态肌肉模型和具有相关参数(如弹性、肌动蛋白肌球蛋白重叠、运动阻力、血流阻力和血质量)的层流非稳态血流,以拉普拉斯变换形式推导了一个具有相关流动阻力的动态动脉血管模型。此外,在血管出口处连接有一个流动阻力。以脉压过程作为给定输入,拉普拉斯变换定义能够以清晰有序的方式推导动脉脉搏过程中几个变量的微分方程——血液流入、流出、储存流量或体积、血管内压力、输出压力、血管上各种压力差、血管壁张力、血管半径和血管壁厚度的变化。这些推导得出了这些微分方程的阶数和结构。这些方程的系数是平滑肌、血流和几何参数的复杂函数(和与积)。只有在特殊情况下——出口处血管开放或封闭时——系数才是血管参数的简单函数。