Schaub M C, Hefti M A, Zuellig R A, Morano I
Institute of Pharmacology, University of Zurich, Switzerland.
Cardiovasc Res. 1998 Feb;37(2):381-404. doi: 10.1016/s0008-6363(97)00258-7.
Cardiac hypertrophy is an adaptive response that normalizes wall stress and compensates for increased workload. It is accompanied by distinct qualitative and quantitative changes in the expression of protein isoforms concerning contractility, intracellular Ca(2+)-homeostasis and metabolism. Changes in the myosin subunit isoform expression improves contractility by an increase in force generation at a given Ca(2+)-concentration (increased Ca(2+)-sensitivity) and by improving the economy of the chemo-mechanical transduction process per amount of utilised ATP (increased duty ratio). In the human atrium this is achieved by partial replacement of the endogenous fast myosin by the ventricular slow-type heavy and light chains. In the hypertrophic human ventricle the slow-type beta-myosin heavy chains remain unchanged, but the ectopic expression of the atrial myosin essential light chain (ALC1) partially replaces the endogenous ventricular isoform (VLC1). The ventricular contractile apparatus with myosin containing ALC1 is characterised by faster cross-bridge kinetics, a higher Ca(2+)-sensitivity of force generation and an increased duty ratio. The mechanism for cross-bridge modulation relies on the extended Ala-Pro-rich N-terminus of the essential light chains of which the first eleven residues interact with the C-terminus of actin. A change in charge in this region between ALC1 and VLC1 explains their functional difference. The intracellular Ca(2+)-handling may be impaired in heart failure, resulting in either higher or lower cytosolic Ca(2+)-levels. Thus the state of the cardiomyocyte determines whether this hypertrophic adaptation remains beneficial or becomes detrimental during failure. Also discussed are the effects on contractility of long-term changes in isoform expression of other sarcomeric proteins. Positive and negative modulation of contractility by short-term phosphorylation reactions at multiple sites in the myosin regulatory light chain, troponin-I, troponin-T, alpha-tropomyosin and myosin binding protein-C are considered in detail.
心脏肥大是一种适应性反应,可使壁应力正常化并补偿增加的工作量。它伴随着与收缩性、细胞内钙稳态和代谢相关的蛋白质异构体表达的明显定性和定量变化。肌球蛋白亚基异构体表达的变化通过在给定钙浓度下增加力的产生(增加钙敏感性)以及通过提高每单位利用的ATP的化学机械转导过程的经济性(增加工作比)来改善收缩性。在人类心房中,这是通过用心室慢型重链和轻链部分替代内源性快肌球蛋白来实现的。在肥厚的人类心室中,慢型β-肌球蛋白重链保持不变,但心房肌球蛋白必需轻链(ALC1)的异位表达部分替代了内源性心室异构体(VLC1)。含有ALC1的肌球蛋白的心室收缩装置的特征在于更快的横桥动力学、更高的力产生钙敏感性和增加的工作比。横桥调节的机制依赖于必需轻链富含丙氨酸-脯氨酸的延伸N末端,其中前11个残基与肌动蛋白的C末端相互作用。ALC1和VLC1之间该区域电荷的变化解释了它们的功能差异。心力衰竭时细胞内钙处理可能受损,导致胞质钙水平升高或降低。因此,心肌细胞的状态决定了这种肥厚性适应在心力衰竭期间是仍然有益还是变得有害。还讨论了其他肌节蛋白异构体表达的长期变化对收缩性的影响。详细考虑了肌球蛋白调节轻链、肌钙蛋白-I、肌钙蛋白-T、α-原肌球蛋白和肌球蛋白结合蛋白-C多个位点的短期磷酸化反应对收缩性的正负调节。