Suppr超能文献

Purine salvage rescue by xanthine-guanine phosphoribosyltransferase (XGPRT) potentiates methotrexate resistance conferred by transfer of a mutated dihydrofolate reductase gene.

作者信息

Mineishi S, Nakahara S, Takebe N, Zhao S C, Banerjee D, Bertino J R

机构信息

Program of Molecular Pharmacology and Experimental Therapeutics and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.

出版信息

Cancer Gene Ther. 1998 May-Jun;5(3):144-9.

PMID:9622097
Abstract

We have previously shown that successful gene transfer of a mutated dihydrofolate reductase (DHFR) cDNA confers resistance to methotrexate (MTX) upon infected cells. We constructed a retrovirus vector, DC/SV6S31GPT, which carries both the Escherichia coli xanthine-guanine phosphoribosyltransferase gene and the mutated Serine 31 DHFR gene. Mouse fibroblast NIH3T3 cells infected with DC/SV6S31 GPT are more resistant to MTX than cells infected with DC/SV6S31, which carries the Serine 31 DHFR and the neomycin resistance gene cDNA. The mechanism of this augmented resistance is the increased salvaging of purines due to expression of xanthine-guanine phosphoribosyltransferase, as the augmentation does not occur when dialyzed serum, containing little xanthine or guanine, is used for cytotoxicity assays. These results indicate that coexpression of a metabolically related gene can potentiate the resistance carried by a drug resistance gene. This vector may be useful in clinical gene therapy to protect bone marrow from the toxic effects of MTX.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验