Suppr超能文献

Relaxin activates the L-arginine-nitric oxide pathway in vascular smooth muscle cells in culture.

作者信息

Bani D, Failli P, Bello M G, Thiemermann C, Bani Sacchi T, Bigazzi M, Masini E

机构信息

Department of Human Anatomy and Histology, University of Florence, Italy.

出版信息

Hypertension. 1998 Jun;31(6):1240-7. doi: 10.1161/01.hyp.31.6.1240.

Abstract

The peptide hormone relaxin (RLX) has been shown to elicit a powerful vasodilatory response in several target organs. This response is mediated by the stimulation of intrinsic nitric oxide (NO) generation. The present study was designed to clarify whether RLX directly promotes the relaxation of vascular smooth muscle cells through stimulation of NO generation. Vascular smooth muscle cells from bovine aortas were incubated with RLX at concentrations ranging from 1 nmol/L to 1 micromol/L. The expression and activity of NO synthase, production of NO, and the intracellular levels of cGMP and Ca2+ were determined. The cell morphology and signal transduction mechanisms of these bovine aortic smooth muscle cells in response to RLX were also studied. RLX stimulated the expression of immunoreactive inducible NO synthase and increased significantly and in a concentration-related fashion inducible NO synthase activity, NO generation, and intracellular cGMP levels. Concurrently, RLX significantly decreased cytosolic Ca2+ concentrations and caused changes in cell shape and the actin cytoskeleton that were consistent with cell relaxation. The signal transduction mechanisms leading to the enhanced expression of inducible NO synthase protein and activity caused by RLX involve the activation of tyrosine kinase, phosphatidylcholine-phospholipase C, and the transcription factor nuclear factor-kappaB, similar to bacterial endotoxins and proinflammatory cytokines. This study suggests that RLX is an endogenous agent capable of regulating vascular tone by activation of the L-arginine-NO pathway in vascular smooth muscle cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验