Storozhuk V M, Sanzharovsky A V, Busel B I
Department of Brain Physiology, A. A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev.
Neuroscience. 1998 Jul;85(2):347-59. doi: 10.1016/s0306-4522(97)00643-x.
Changes in impulse activity of sensorimotor cortex neurons associated with interaction of glutamate and dopamine during conditioned placing reaction were investigated in experiments on cats. Application of either glutamate or levodopa as a dopamine precursor increased background and evoked impulse activity in many of sensorimotor cortex neurons. It occurred occasionally that an increased impulse activity of cortical neurons produced by joint application of glutamate and levodopa could be much more intense than that produced by one of these substances. Amphetamine acted on cortical neurons in a similar way as levodopa. Haloperidol, a non-selective blocker of dopamine1 and dopamine2 receptors, increased or did not change background and evoked impulse activity in some cortical neurons. In contrast to application of glutamate alone, simultaneous application of glutamate and haloperidol to the neocortex depressed neuronal responses connected with conditioned movement. Thus, glutamate cannot exert its potentiating effect on evoked neuronal activity due to the depressing action of haloperidol. This means that glutamate potentiation is realized to a great extent through molecular mechanisms common for glutamate and dopamine, possibly through G-proteins which are common for glutamate metabotropic and dopamine receptors.