Suppr超能文献

Solution structure and main chain dynamics of the regulatory domain (Residues 1-91) of human cardiac troponin C.

作者信息

Pääkkönen K, Annila A, Sorsa T, Pollesello P, Tilgmann C, Kilpeläinen I, Karisola P, Ulmanen I, Drakenberg T

机构信息

VTT, Chemical Technology, P. O. Box 1401 FIN-02044 VTT, Finland.

出版信息

J Biol Chem. 1998 Jun 19;273(25):15633-8. doi: 10.1074/jbc.273.25.15633.

Abstract

The three-dimensional structure of calcium-loaded regulatory, i.e. N-terminal, domain (1-91) of human cardiac troponin C (cNTnC) was determined by NMR in water/trifluoroethanol (91:9 v/v) solution. The single-calcium-loaded cardiac regulatory domain is in a "closed" conformation with comparatively little exposed hydrophobic surface. Difference distance matrices computed from the families of Ca2+-cNTnC, the apo and two-calcium forms of the skeletal TnC (sNTnC) structures reveal similar relative orientations for the N, A, and D helices. The B and C helices are closer to the NAD framework in Ca2+-cNTnC and in apo-sNTnC than in 2.Ca2+-sNTnC. However, there is an indication of a conformational exchange based on broad 15N resonances for several amino acids measured at several temperatures. A majority of the amides in the alpha-helices and in the calcium binding loop exhibit very fast motions with comparatively small amplitudes according to the Lipari-Szabo model. A few residues at the N and C termini are flexible. Data were recorded from nonlabeled and 15N-labeled samples, and backbone dynamics was investigated by 15N T1, T2, and heteronuclear nuclear Overhauser effect as well as by relaxation interference measurements.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验