Hargreaves D, Rice D W, Sedelnikova S E, Artymiuk P J, Lloyd R G, Rafferty J B
Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, UK.
Nat Struct Biol. 1998 Jun;5(6):441-6. doi: 10.1038/nsb0698-441.
Here we present the crystal structure of the Escherichia coli protein RuvA bound to a key DNA intermediate in recombination, the Holliday junction. The structure, solved by isomorphous replacement and density modification at 6 A resolution, reveals the molecular architecture at the heart of the branch migration and resolution reactions required to process Holliday intermediates into recombinant DNA molecules. It also reveals directly for the first time the structure of the Holliday junction. A single RuvA tetramer is bound to one face of a junction whose four DNA duplex arms are arranged in an open and essentially four-fold symmetric conformation. Protein-DNA contacts are mediated by two copies of a helix-hairpin-helix motif per RuvA subunit that contact the phosphate backbone in a very similar manner. The open structure of the junction stabilized by RuvA binding exposes a DNA surface that could be bound by the RuvC endonuclease to promote resolution.
在此,我们展示了与重组过程中的关键DNA中间体——霍利迪连接体(Holliday junction)相结合的大肠杆菌蛋白RuvA的晶体结构。该结构通过同晶置换和在6埃分辨率下的密度修正得以解析,揭示了将霍利迪中间体加工成重组DNA分子所需的分支迁移和拆分反应核心的分子结构。它还首次直接揭示了霍利迪连接体的结构。单个RuvA四聚体结合在连接体的一个面上,其四条DNA双链臂呈开放且基本为四重对称的构象排列。每个RuvA亚基通过两个螺旋-发夹-螺旋基序的拷贝介导蛋白质与DNA的接触,它们以非常相似的方式与磷酸骨架接触。由RuvA结合稳定的连接体开放结构暴露出一个可能被RuvC核酸内切酶结合以促进拆分的DNA表面。