Linkov I, Wilson R, Gray G M
Department of Physics, Jefferson Laboratories, Harvard University, Cambridge, Massachusetts 02138, USA.
Toxicol Sci. 1998 May;43(1):1-9. doi: 10.1006/toxs.1998.2445.
Anticarcinogenicity in a long-term rodent bioassay is defined as a statistically significant decrease of a specific tumor type in a dosed group following chemical exposure. About 92% of chemicals tested by the National Toxicology Program prior to 1983 reveal at least one site with a significant (p < or = 0.05) tumor rate decrease in one or more tested groups, a result consistent with those of J. K. Haseman and F. M. Johnson (1996, Mutat. Res. 350, 131-141) for a database of recently tested chemicals. Detection of tumor decreases in a specific site can be explained not only by biological effects, but also as a result of random variability in the background tumor rates, decreases in body weight, or decreases in survival of treated animals. This paper evaluates the rate of false-positive anticarcinogenic findings due to random effects (variations in tumor rates and the multiple comparisons undertaken in evaluating a bioassay), while a companion paper addresses the influence of weight and survival depression. Monte-Carlo simulation was conducted to assess the contribution of random effects. This contribution was found to be important even when a statistical significance cutoff of p0 < or = 0.05 was chosen. If a more stringent statistical criterion was used (p0 < or = 0.01 or p < or = 0.005), the proportion of false positive determinations diminishes. The number of anticarcinogens in the database remains substantially higher than predicted by the stimulations. An examination of the distribution of all p values (T. Schweder and E. Spjøtvoll, 1982, Biometrika 69, 493-502) also indicates that statistically significant anticarcinogenic responses are found in the database at a higher rate than would result from purely random responses. Finally, the cross-species prediction of anticarcinogenic responses was examined in a manner similar to a study of cross-species prediction of carcinogenic responses (G. M. Gray et al., 1995, Reg. Toxicol. Pharmacol. 20, 281-301). The analyses show that anticarcinogenic effects in one rodent species predict well anticarcinogenic effect in another rodent species. It seems likely that biological factors are involved in anticarcinogenic responses observed in rodent cancer bioassays.
长期啮齿动物生物测定中的抗癌性定义为化学物质暴露后给药组中特定肿瘤类型的统计学显著减少。1983年之前美国国家毒理学计划测试的约92%的化学物质显示,在一个或多个测试组中至少有一个部位的肿瘤发生率显著降低(p≤0.05),这一结果与J.K.哈斯曼和F.M.约翰逊(1996年,《突变研究》350卷,第131 - 141页)对最近测试的化学物质数据库的研究结果一致。特定部位肿瘤减少的检测不仅可以用生物学效应来解释,也可能是背景肿瘤发生率的随机变化、体重减轻或受试动物存活率降低的结果。本文评估了由于随机效应(肿瘤发生率的变化以及评估生物测定时进行的多重比较)导致的假阳性抗癌发现率,而另一篇相关论文探讨了体重和存活率降低的影响。进行了蒙特卡罗模拟以评估随机效应的贡献。即使选择了p0≤0.05的统计显著性临界值,也发现这种贡献很重要。如果使用更严格的统计标准(p0≤0.01或p≤0.005),假阳性判定的比例会降低。数据库中的抗癌物质数量仍然大大高于模拟预测的数量。对所有p值分布的检查(T.施韦德和E.斯约特沃尔,1982年,《生物统计学》69卷,第493 - 502页)也表明,数据库中发现的具有统计学显著性的抗癌反应发生率高于纯粹随机反应所导致的发生率。最后,以类似于致癌反应跨物种预测研究(G.M.格雷等人,1995年,《毒理学与药理学》20卷,第281 - 301页)的方式检查了抗癌反应的跨物种预测。分析表明,一种啮齿动物物种中的抗癌效应能很好地预测另一种啮齿动物物种中的抗癌效应。在啮齿动物癌症生物测定中观察到的抗癌反应似乎很可能涉及生物学因素。