Suppr超能文献

混合分布中的偏度。

Skewness in commingled distributions.

作者信息

Maclean C J, Morton N E, Elston R C, Yee S

出版信息

Biometrics. 1976 Sep;32(3):695-9.

PMID:963179
Abstract

A likelihood ratio test is given for distinguishing skewness from commingled distributions, using a power transform to remove skewness appropriately for each of the alternatives tested. The alternative hypotheses postulate that the transformed data are from one normal or a mixture of two or three normal homoscedastic distributions. Since each mixture has unique asymmetry, skewness is estimated simultaneously with the means, proportions and variance of components. Commingling cannot be rigorously proven in this way, as some other transform may provide a better approximation to normality. However, the error of asserting admixture whenever there is skewness has been avoided, and estimates of admixture parameters provide a basis for more conclusive tests in relatives or other populations. Two examples are given, one in which adjustment for skeweness left evidence of commingling.

摘要

给出了一种似然比检验,用于区分偏态分布与混合分布,通过幂变换针对每个检验的备择假设适当消除偏态。备择假设假定变换后的数据来自一个正态分布或两个或三个正态同方差分布的混合。由于每个混合分布都有独特的不对称性,因此在估计成分的均值、比例和方差的同时估计偏态。以这种方式不能严格证明混合情况,因为其他一些变换可能会提供更好的正态近似。然而,避免了每当存在偏态时就断言混合的错误,并且混合参数的估计为在亲属或其他人群中进行更具结论性的检验提供了基础。给出了两个例子,其中一个例子中,对偏态的调整留下了混合的证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验