Suppr超能文献

使用比较分子场分析/交叉验证的r2引导区域选择方法对非甾体雌激素受体配体进行三维定量构效关系研究。

Three-dimensional quantitative structure-activity relationship study of nonsteroidal estrogen receptor ligands using the comparative molecular field analysis/cross-validated r2-guided region selection approach.

作者信息

Sadler B R, Cho S J, Ishaq K S, Chae K, Korach K S

机构信息

Laboratory of Reproductive and Developmental Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.

出版信息

J Med Chem. 1998 Jun 18;41(13):2261-7. doi: 10.1021/jm9705521.

Abstract

A newly developed comparative molecular field analysis (CoMFA) technique, the cross-validated r2-guided region selection (CoMFA/q2-GRS) method, has been used to build a quantitative structure-activity relationship (3D-QSAR) for nonsteroidal estrogen receptor (ER) ligands. Ligands included in this study belong to a series of diethylstilbestrol (DES) and indenestrol analogues whose affinities for the mouse ER (mER) have been determined in our laboratory. The final model utilized 30 compounds and yielded a q2GRS (cross-validated r2, guided region selection) of 0.796, as compared to a q2 of 0.720 for conventional CoMFA, with a standard error of prediction of 0.594 at 3 principal components. This model was used to visualize steric and electrostatic features of the ligands that correspond with ER binding affinity. Results obtained from the CoMFA steric and electrostatic plots of this model have also been compared to information from the ER binding affinities of substituted estradiol analogues. This is in an effort to determine structural features of compounds in the CoMFA analysis that may correspond to those of the estradiol analogues and to further clarify the mode of binding of nonsteroidal ER ligands.

摘要

一种新开发的比较分子场分析(CoMFA)技术,即交叉验证的r2引导区域选择(CoMFA/q2-GRS)方法,已被用于构建非甾体雌激素受体(ER)配体的定量构效关系(3D-QSAR)。本研究中包含的配体属于一系列己烯雌酚(DES)和茚雌酚类似物,其对小鼠ER(mER)的亲和力已在我们实验室中测定。最终模型使用了30种化合物,得到的q2GRS(交叉验证的r2,引导区域选择)为0.796,而传统CoMFA的q2为0.720,在3个主成分下预测标准误差为0.594。该模型用于可视化与ER结合亲和力相对应的配体的空间和静电特征。该模型的CoMFA空间和静电图所获得的结果也与取代雌二醇类似物的ER结合亲和力信息进行了比较。这是为了确定CoMFA分析中化合物的结构特征,这些特征可能与雌二醇类似物的特征相对应,并进一步阐明非甾体ER配体的结合模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验