Suppr超能文献

The metabolic activation of tamoxifen and alpha-hydroxytamoxifen to DNA-binding species in rat hepatocytes proceeds via sulphation.

作者信息

Davis W, Venitt S, Phillips D H

机构信息

Section of Molecular Carcinogenesis, Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, UK.

出版信息

Carcinogenesis. 1998 May;19(5):861-6. doi: 10.1093/carcin/19.5.861.

Abstract

The biotransformation pathway of tamoxifen and alpha-hydroxytamoxifen to DNA-binding species was investigated in rat hepatocytes in vitro. Rat hepatocytes were isolated by in situ collagenase perfusion and then maintained in sulphate-free Dulbecco's modified Eagle's medium. Magnesium sulphate was added to the medium to give concentrations of 0-10 microM, prior to treatment for 18 h with solvent vehicle (DMSO), tamoxifen (10 microM), alpha-hydroxytamoxifen (1 microM) or benzo[a]pyrene (BaP) (10 and 50 microM). DNA was isolated and analysed by 32P-post-labelling. For tamoxifen and alpha-hydroxytamoxifen, the level of DNA adduct formation was directly proportional to the concentration of sulphate in the medium. Between 0 and 10 microM MgSO4, the DNA adduct level increased 10-fold with both compounds. Rat hepatocytes were also maintained in normal Dulbecco's modified Eagle's medium and pretreated with dehydroisoandrosterone-3-sulphate (DHEAS, a sulphotransferase inhibitor) at concentrations ranging from 0-1 mM, prior to treatment with solvent vehicle (DMSO), tamoxifen (10 microM), alpha-hydroxytamoxifen (1 microM) or BaP (50 microM). For tamoxifen and alpha-hydroxytamoxifen the level of DNA adducts was reduced to approximately one-fifth by the addition of DHEAS (0.1 mM). BaP-DNA adduct formation, which proceeds by a pathway that does not require sulphation, was not significantly affected by sulphate concentration or by addition of DHEAS, which demonstrates that the general metabolic capacity and viability of the hepatocytes were not compromised. It is concluded that the activation of tamoxifen in rat liver cells to DNA binding products proceeds predominantly through hydroxylation followed by sulphate ester formation at the alpha-position of the ethyl side chain.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验