Ishiguro N, Brown G D, Ishizu A, Meruelo D
Department of Pathology and Kaplan Cancer Center, New York University Medical Center, NY 10016, USA.
J Immunol. 1998 Jun 15;160(12):5907-14.
Resistance to radiation leukemia virus (RadLV)-induced leukemia is correlated with an increase in H-2Dd expression on the thymocyte surface. It has been shown that elevated H-2Dd expression on infected thymocytes is a result of elevated mRNA transcription and that the transcriptional increase is correlated with elevated levels of a DNA binding activity, H-2 binding factor 1 (H-2 BF1), which recognizes the 5'-flanking sequence (5'-TGACGCG-3') of the H-2Dd gene. Recently, it has been shown that the activation transcription factor 1 (ATF-1) homodimer is one form of the H-2 BF1 complex. Here we demonstrate that the cAMP response element binding protein (CREB) homodimer and the heterodimer of CREB/ATF-1 also recognize the cis regulatory motif and are two additional forms of the H-2 BF1 complex. The levels of mRNA encoding ATF-1 and CREB were both increased in RadLV-infected thymocytes that showed increased levels of H-2 mRNA. Also, all three H-2 BF1 binding activities, ATF-1 homodimer, CREB homodimer, and ATF-1/CREB heterodimer, were increased in RadLV-infected thymocytes that expressed high levels of H-2Dd Ag on the cell surface. Transfection experiments demonstrated that ATF-1 and CREB activated a reporter plasmid containing the H-2 BF1 motif. These observations strongly suggest that both ATF-1 and CREB are involved in the regulation of H-2 gene expression following RadLV infection of mouse thymocytes.