Suppr超能文献

主链静电、疏水效应和侧链构象熵在决定蛋白质二级结构中的作用。

Role of main-chain electrostatics, hydrophobic effect and side-chain conformational entropy in determining the secondary structure of proteins.

作者信息

Avbelj F, Fele L

机构信息

National Institute of Chemistry, Ljubljana, Slovenia.

出版信息

J Mol Biol. 1998 Jun 12;279(3):665-84. doi: 10.1006/jmbi.1998.1792.

Abstract

The physiochemical bases of amino acid preferences for alpha-helical, beta-strand, and other main-chain conformational states in proteins is controversial. Hydrophobic effect, side-chain conformational entropy, steric factors, and main-chain electrostatic interactions have all been advanced as the dominant physical factors which determine these preferences. Many attempts to resolve the controversy have focused on small model systems. The disadvantage of such systems is that the amino acids in small molecules are largely exposed to the solvent. In proteins, however, the amino acids are in contact with the solvent to a different degree, causing a large variability of strengths of all interactions. The estimates of mean strengths of interactions in the actual protein environment are therefore essential to resolve the controversy. In this work the experimental protein structures are used to estimate the mean strengths of various interactions in proteins. The free energy contributions of the interactions are implemented into the Lifson-Roig theory to calculate the helix and strand free energy profiles. From the profiles the secondary structures of proteins and peptides are predicted using simple rules. The role of hydrophobic effect, side-chain conformational entropy, and main-chain electrostatic interactions in determining the secondary structure of proteins is assessed from the abilities of different models, describing stability of secondary structures, to correctly predict alpha-helices, beta-strands and coil in 130 proteins. The three-state accuracy of the model, which contains only the free energy terms due to the main-chain electrostatics with 40 coefficients, is 68.7%. This accuracy is approaching to the accuracy of currently the best secondary structure prediction algorithm based on neural networks (72%); however, many thousands of parameters have to be optimized during the training of the neural networks to reach this level of accuracy. The correlation coefficient between the calculated and the experimental helix contents of 37 alanine based peptides is 0.91. If the hydrophobic and the side-chain conformational entropy terms are included into the helix-coil transition parameters, the accuracy of the algorithm does not improve significantly. However, if the main-chain electrostatic interactions are excluded from the helix-coil and strand-coil transition parameters, the accuracy of the algorithm reaches only 59.5%. These results support the dominant role of the short-range main-chain electrostatics in determining the secondary structure of proteins and peptides. The role of the hydrophobic effect and the side-chain conformational entropy is small.

摘要

蛋白质中α-螺旋、β-链及其他主链构象状态对氨基酸偏好的物理化学基础存在争议。疏水效应、侧链构象熵、空间因素和主链静电相互作用都被认为是决定这些偏好的主要物理因素。许多解决这一争议的尝试都集中在小模型系统上。此类系统的缺点是小分子中的氨基酸在很大程度上暴露于溶剂中。然而,在蛋白质中,氨基酸与溶剂的接触程度不同,导致所有相互作用的强度存在很大差异。因此,估计实际蛋白质环境中相互作用的平均强度对于解决这一争议至关重要。在这项工作中,利用实验得到的蛋白质结构来估计蛋白质中各种相互作用的平均强度。将相互作用的自由能贡献纳入Lifson-Roig理论,以计算螺旋和链的自由能分布。根据这些分布,使用简单规则预测蛋白质和肽的二级结构。通过不同模型描述二级结构稳定性的能力,评估疏水效应、侧链构象熵和主链静电相互作用在决定蛋白质二级结构中的作用,这些模型用于正确预测130种蛋白质中的α-螺旋、β-链和无规卷曲。该模型的三态准确率为68.7%,该模型仅包含由于主链静电作用产生的自由能项,有40个系数。这一准确率接近目前基于神经网络的最佳二级结构预测算法的准确率(72%);然而,在神经网络训练过程中必须优化数千个参数才能达到这一准确率水平。37种基于丙氨酸的肽的计算螺旋含量与实验螺旋含量之间的相关系数为0.91。如果将疏水和侧链构象熵项纳入螺旋-无规卷曲转变参数中,算法的准确率没有显著提高。然而,如果从螺旋-无规卷曲和链-无规卷曲转变参数中排除主链静电相互作用,算法的准确率仅达到59.5%。这些结果支持了短程主链静电作用在决定蛋白质和肽的二级结构中起主导作用,而疏水效应和侧链构象熵的作用较小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验