Sreenivas A, Patton-Vogt J L, Bruno V, Griac P, Henry S A
Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2683, USA.
J Biol Chem. 1998 Jul 3;273(27):16635-8. doi: 10.1074/jbc.273.27.16635.
The SEC14 gene encodes a phosphatidylinositol/phosphatidylcholine transfer protein essential for secretion and growth in yeast (1). Mutations (cki1, cct1, and cpt1) in the CDP-choline pathway for phosphatidylcholine synthesis suppress the sec14 growth defect (2), permitting sec14(ts) cki1, sec14(ts) cct1, and sec14(ts) cpt1 strains to grow at the sec14(ts) restrictive temperature. Previously, we reported that these double mutant strains also excrete the phospholipid metabolites, choline and inositol (3). We now report that these choline and inositol excretion phenotypes are eliminated when the SPO14 (PLD1) gene encoding phospholipase D1 is deleted. In contrast to sec14(ts) cki1 strains, sec14(ts) cki1 pld1 strains are not viable at the sec14(ts) restrictive temperature and exhibit a pattern of invertase secretion comparable with sec14(ts) strains. Thus, the PLD1 gene product appears to play an essential role in the suppression of the sec14(ts) defect by CDP-choline pathway mutations, indicating a role for phospholipase D1 in growth and secretion. Furthermore, sec14(ts) strains exhibit elevated Ca2+-independent, phophatidylinositol 4,5-bisphosphate-stimulated phospholipase D activity. We also propose that phospholipase D1-mediated phosphatidylcholine turnover generates a signal that activates transcription of INO1, the structural gene for inositol 1-phosphate synthase.
SEC14基因编码一种磷脂酰肌醇/磷脂酰胆碱转移蛋白,该蛋白对酵母的分泌和生长至关重要(1)。磷脂酰胆碱合成的CDP - 胆碱途径中的突变(cki1、cct1和cpt1)抑制了sec14的生长缺陷(2),使sec14(ts)cki1、sec14(ts)cct1和sec14(ts)cpt1菌株能够在sec14(ts)限制温度下生长。此前,我们报道这些双突变菌株还会分泌磷脂代谢产物胆碱和肌醇(3)。我们现在报道,当编码磷脂酶D1的SPO14(PLD1)基因被缺失时,这些胆碱和肌醇排泄表型就会消失。与sec14(ts)cki1菌株不同,sec14(ts)cki1 pld1菌株在sec14(ts)限制温度下无法存活,并且表现出与sec14(ts)菌株相当的蔗糖酶分泌模式。因此,PLD1基因产物似乎在通过CDP - 胆碱途径突变抑制sec14(ts)缺陷中起重要作用,这表明磷脂酶D1在生长和分泌中发挥作用。此外,sec14(ts)菌株表现出升高的不依赖Ca2 +、磷脂酰肌醇4,5 - 二磷酸刺激的磷脂酶D活性。我们还提出,磷脂酶D1介导的磷脂酰胆碱周转产生一种信号,该信号激活肌醇1 - 磷酸合酶的结构基因INO1的转录。