Suppr超能文献

在cel、attB、attD和attR突变体中,根癌农杆菌在根部的定殖减少。

Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants.

作者信息

Matthysse A G, McMahan S

机构信息

Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA.

出版信息

Appl Environ Microbiol. 1998 Jul;64(7):2341-5. doi: 10.1128/AEM.64.7.2341-2345.1998.

Abstract

Root colonization by Agrobacterium tumefaciens was measured by using tomato and Arabidopsis thaliana roots dipped in a bacterial suspension and planted in soil. Wild-type bacteria showed extensive growth on tomato roots; the number of bacteria increased from 10(3) bacteria/cm of root length at the time of inoculation to more than 10(7) bacteria/cm after 10 days. The numbers of cellulose-minus and nonattaching attB, attD, and attR mutant bacteria were less than 1/10,000th the number of wild-type bacteria recovered from tomato roots. On roots of A. thaliana ecotype Landsberg erecta, the numbers of wild-type bacteria increased from about 30 to 8,000 bacteria/cm of root length after 8 days. The numbers of cellulose-minus and nonattaching mutant bacteria were 1/100th to 1/10th the number of wild-type bacteria recovered after 8 days. The attachment of A. tumefaciens to cut A. thaliana roots incubated in 0.4% sucrose and observed with a light microscope was also reduced with cel and att mutants. These results suggest that cellulose synthesis and attachment genes play a role in the ability of the bacteria to colonize roots, as well as in bacterial pathogenesis.

摘要

通过将番茄和拟南芥的根浸入细菌悬液中并种植在土壤中来测定根癌土壤杆菌在根上的定殖情况。野生型细菌在番茄根上大量生长;接种时细菌数量为每厘米根长10³个细菌,10天后增加到每厘米根长超过10⁷个细菌。从番茄根中回收的纤维素缺失型以及非附着型attB、attD和attR突变体细菌的数量不到野生型细菌数量的万分之一。在拟南芥生态型Landsberg erecta的根上,野生型细菌数量在8天后从每厘米根长约30个增加到8000个。纤维素缺失型和非附着型突变体细菌的数量是8天后回收的野生型细菌数量的1/100至1/10。用光学显微镜观察发现,在0.4%蔗糖中培养的切割后的拟南芥根上,根癌土壤杆菌与cel和att突变体的附着也减少了。这些结果表明,纤维素合成和附着基因在细菌定殖根的能力以及细菌致病过程中发挥作用。

相似文献

1
Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants.
Appl Environ Microbiol. 1998 Jul;64(7):2341-5. doi: 10.1128/AEM.64.7.2341-2345.1998.
2
Attachment to roots and virulence of a chvB mutant of Agrobacterium tumefaciens are temperature sensitive.
Mol Plant Microbe Interact. 2002 Feb;15(2):160-3. doi: 10.1094/MPMI.2002.15.2.160.
3
The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens.
Mol Plant Microbe Interact. 2005 Sep;18(9):1002-10. doi: 10.1094/MPMI-18-1002.
5
Quantification of Agrobacterium tumefaciens C58 attachment to Arabidopsis thaliana roots.
FEMS Microbiol Lett. 2017 Oct 2;364(18). doi: 10.1093/femsle/fnx158.
7
Agrobacterium tumefaciens fitness genes involved in the colonization of plant tumors and roots.
New Phytol. 2022 Jan;233(2):905-918. doi: 10.1111/nph.17810. Epub 2021 Nov 8.

引用本文的文献

1
Comparative Genomics of Novel G3 Strains Isolated From the International Space Station and Description of sp. nov.
Front Microbiol. 2021 Dec 6;12:765943. doi: 10.3389/fmicb.2021.765943. eCollection 2021.
3
Glycoside Hydrolase Genes Are Required for Virulence of Agrobacterium tumefaciens on and Tomato.
Appl Environ Microbiol. 2019 Jul 18;85(15). doi: 10.1128/AEM.00603-19. Print 2019 Aug 1.
4
Adherence of Bacteria to Plant Surfaces Measured in the Laboratory.
J Vis Exp. 2018 Jun 19(136):56599. doi: 10.3791/56599.
7
The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation.
Int J Dev Biol. 2013;57(6-8):467-81. doi: 10.1387/ijdb.130199bl.
8
CelR, an ortholog of the diguanylate cyclase PleD of Caulobacter, regulates cellulose synthesis in Agrobacterium tumefaciens.
Appl Environ Microbiol. 2013 Dec;79(23):7188-202. doi: 10.1128/AEM.02148-13. Epub 2013 Sep 13.
9
Role for Rhizobium rhizogenes K84 cell envelope polysaccharides in surface interactions.
Appl Environ Microbiol. 2012 Mar;78(6):1644-51. doi: 10.1128/AEM.07117-11. Epub 2011 Dec 30.
10
Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens.
Genome Biol Evol. 2011;3:762-81. doi: 10.1093/gbe/evr070. Epub 2011 Jul 27.

本文引用的文献

2
Colonization of Tomato Plants by Two Agrocin-Producing Strains of Agrobacterium tumefaciens.
Appl Environ Microbiol. 1988 Dec;54(12):3133-7. doi: 10.1128/aem.54.12.3133-3137.1988.
3
Production of Pili (Fimbriae) by Pseudomonas fluorescens and Correlation with Attachment to Corn Roots.
Appl Environ Microbiol. 1987 Jul;53(7):1397-405. doi: 10.1128/aem.53.7.1397-1405.1987.
6
Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria.
Mol Plant Microbe Interact. 1996 Sep;9(7):600-7. doi: 10.1094/mpmi-9-0600.
8
Fate of Agrobacterium radiobacter K84 in the environment.
Appl Environ Microbiol. 1993 Jul;59(7):2112-20. doi: 10.1128/aem.59.7.2112-2120.1993.
9
Genes required for cellulose synthesis in Agrobacterium tumefaciens.
J Bacteriol. 1995 Feb;177(4):1069-75. doi: 10.1128/jb.177.4.1069-1075.1995.
10
Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection.
J Bacteriol. 1983 May;154(2):906-15. doi: 10.1128/jb.154.2.906-915.1983.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验