Suppr超能文献

小麦全蚀病菌变种小麦变种、禾本科变种、燕麦变种以及禾谷镰刀菌对小麦中苯并恶唑啉酮化感物质的解毒作用

Detoxification of Benzoxazolinone Allelochemicals from Wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum.

作者信息

Friebe A, Vilich V, Hennig L, Kluge M, Sicker D

机构信息

Institute of Agricultural Botany, University of Bonn, 53115 Bonn, Germany.

出版信息

Appl Environ Microbiol. 1998 Jul 1;64(7):2386-91. doi: 10.1128/AEM.64.7.2386-2391.1998.

Abstract

The ability of phytopathogenic fungi to overcome the chemical defense barriers of their host plants is of great importance for fungal pathogenicity. We studied the role of cyclic hydroxamic acids and their related benzoxazolinones in plant interactions with pathogenic fungi. We identified species-dependent differences in the abilities of Gaeumannomyces graminis var. tritici, Gaeumannomyces graminis var. graminis, Gaeumannomyces graminis var. avenae, and Fusarium culmorum to detoxify these allelochemicals of gramineous plants. The G. graminis var. graminis isolate degraded benzoxazolin-2(3H)-one (BOA) and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) more efficiently than did G. graminis var. tritici and G. graminis var. avenae. F. culmorum degraded BOA but not MBOA. N-(2-Hydroxyphenyl)-malonamic acid and N-(2-hydroxy-4-methoxyphenyl)-malonamic acid were the primary G. graminis var. graminis and G. graminis var. tritici metabolites of BOA and MBOA, respectively, as well as of the related cyclic hydroxamic acids. 2-Amino-3H-phenoxazin-3-one was identified as an additional G. graminis var. tritici metabolite of BOA. No metabolite accumulation was detected for G. graminis var. avenae and F. culmorum by high-pressure liquid chromatography. The mycelial growth of the pathogenic fungi was inhibited more by BOA and MBOA than by their related fungal metabolites. The tolerance of Gaeumannomyces spp. for benzoxazolinone compounds is correlated with their detoxification ability. The ability of Gaeumannomyces isolates to cause root rot symptoms in wheat (cultivars Rektor and Astron) parallels their potential to degrade wheat allelochemicals to nontoxic compounds.

摘要

植物病原真菌克服其寄主植物化学防御屏障的能力对于真菌致病性至关重要。我们研究了环状异羟肟酸及其相关苯并恶唑啉酮在植物与致病真菌相互作用中的作用。我们确定了小麦全蚀病菌变种小麦、小麦全蚀病菌变种燕麦、小麦全蚀病菌变种禾本科以及禾谷镰刀菌在解毒禾本科植物这些化感物质能力上的种间差异。小麦全蚀病菌变种禾本科分离株降解苯并恶唑啉 - 2(3H)-酮(BOA)和6 - 甲氧基 - 苯并恶唑啉 - 2(3H)-酮(MBOA)的效率比小麦全蚀病菌变种小麦和小麦全蚀病菌变种燕麦更高。禾谷镰刀菌降解BOA但不降解MBOA。N-(2 - 羟基苯基)-丙二酰胺酸和N-(2 - 羟基 - 4 - 甲氧基苯基)-丙二酰胺酸分别是小麦全蚀病菌变种禾本科和小麦全蚀病菌变种小麦对BOA和MBOA以及相关环状异羟肟酸的主要代谢产物。2 - 氨基 - 3H - 吩恶嗪 - 3 - 酮被鉴定为小麦全蚀病菌变种小麦对BOA的另一种代谢产物。通过高压液相色谱未检测到小麦全蚀病菌变种燕麦和禾谷镰刀菌有代谢产物积累。致病真菌的菌丝生长受到BOA和MBOA的抑制比受到其相关真菌代谢产物的抑制更大。全蚀病菌属对苯并恶唑啉酮化合物的耐受性与其解毒能力相关。全蚀病菌分离株在小麦(品种Rektor和Astron)中引起根腐症状的能力与其将小麦化感物质降解为无毒化合物的潜力相当。

相似文献

9
Take-all or nothing.要么全取,要么全无。
Stud Mycol. 2016;83:19-48. doi: 10.1016/j.simyco.2016.06.002. Epub 2016 Jul 1.

引用本文的文献

5
Disease Resistance Mechanisms in Plants.植物中的抗病机制
Genes (Basel). 2018 Jul 4;9(7):339. doi: 10.3390/genes9070339.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验