Schlodder E, Falkenberg K, Gergeleit M, Brettel K
Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Germany.
Biochemistry. 1998 Jun 30;37(26):9466-76. doi: 10.1021/bi973182r.
Electron-transfer reactions following the formation of P700(+)A1- have been studied in isolated Photosystem I complexes from Synechococcus elongatus between 300 and 5 K by flash absorption spectroscopy. (1) In the range from 300 to 200 K, A1- is reoxidized by electron transfer to the iron-sulfur cluster FX. The rate slows down with decreasing temperature, corresponding to an activation energy of 220 +/- 20 meV in this temperature range. Analyzing the temperature dependence of the rate in terms of nonadiabatic electron-transfer theory, one obtains a reorganization energy of about 1 eV and an edge-to-edge distance between A1 and FX of about 8 A assuming the same distance dependence of the electron-transfer rate as in purple bacterial reaction centers. (2) At temperatures below 150 K, different fractions of PS I complexes attributed to frozen conformational substates can be distinguished. A detailed analysis at 77 K gave the following results: (a) In about 45%, flash-induced electron transfer is limited to the formation and decay of the secondary pair P700(+)A1-. The charge recombination occurs with a t1/2 of about 170 micros. (b) In about 20%, the state P700(+)FX- is formed and recombines with complex kinetics (t1/2 = 5-100 ms). (c) In about 35%, irreversible formation of P700(+)FA- or P700(+)FB- is possible. (3) The transition from efficient forward electron transfer at higher temperatures to heterogeneous photochemistry at low temperatures has been investigated in different glass-forming solvents. The yield of forward electron transfer to the iron-sulfur clusters decreases in a narrow temperature interval. The temperature of the half-maximal effect varies between different solvents and appears to be correlated with their liquid to glass transition. It is proposed that reorganization processes in the surroundings of the reactants which are required for the stabilization of the charge-separated state become arrested near the glass transition. This freezing of protein motions and/or solvent reorganization may affect electron-transfer reactions through changes in the free-energy gap and the reorganization energy. (4) The rate of charge recombination between P700(+) and A1- increases slightly (about 1.5-fold) when the temperature is decreased from 300 to 5 K. This charge recombination characterized by a large driving force is much less influenced by the solvent properties than the forward electron-transfer steps from A1- to FX and FA/B.
利用闪光吸收光谱法,在300至5K温度范围内,对来自聚球藻的分离光系统I复合物中P700(+)A1-形成后的电子转移反应进行了研究。(1) 在300至200K范围内,A1-通过电子转移至铁硫簇FX而被再氧化。速率随温度降低而减慢,在该温度范围内对应于220±20meV的活化能。根据非绝热电子转移理论分析速率的温度依赖性,假设电子转移速率与紫色细菌反应中心具有相同的距离依赖性,则可得到约1eV的重组能和约8Å的A1与FX之间的边到边距离。(2) 在低于150K的温度下,可以区分出归因于冻结构象亚态的不同部分的PS I复合物。在77K下的详细分析给出了以下结果:(a) 在约45%的复合物中,闪光诱导的电子转移仅限于次级对P700(+)A1-的形成和衰减。电荷复合发生的半衰期约为170微秒。(b) 在约20%的复合物中,形成了P700(+)FX-状态,并以复杂的动力学进行复合(半衰期 = 5 - 100毫秒)。(c) 在约35%的复合物中,可能不可逆地形成P700(+)FA-或P700(+)FB-。(3) 在不同的玻璃形成溶剂中,研究了从较高温度下的有效正向电子转移到低温下的异质光化学的转变。向铁硫簇的正向电子转移产率在狭窄的温度区间内降低。半最大效应的温度在不同溶剂之间变化,并且似乎与其液 - 玻璃转变相关。有人提出,电荷分离态稳定所需的反应物周围的重组过程在玻璃转变附近会停止。蛋白质运动和/或溶剂重组的这种冻结可能通过自由能隙和重组能的变化影响电子转移反应。(4) 当温度从300K降至5K时,P700(+)与A1-之间的电荷复合速率略有增加(约1.5倍)。这种以大驱动力为特征的电荷复合受溶剂性质的影响远小于从A1-到FX和FA/B的正向电子转移步骤。