Suppr超能文献

一种使用人工神经网络估计线性房室模型参数的新方法。

A new method to estimate parameters of linear compartmental models using artificial neural networks.

作者信息

Gambhir S S, Keppenne C L, Banerjee P K, Phelps M E

机构信息

The Crump Institute for Biological Imaging, Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, California 90095-1770, USA.

出版信息

Phys Med Biol. 1998 Jun;43(6):1659-78. doi: 10.1088/0031-9155/43/6/021.

Abstract

At present, the preferred tool for parameter estimation in compartmental analysis is an iterative procedure; weighted nonlinear regression. For a large number of applications, observed data can be fitted to sums of exponentials whose parameters are directly related to the rate constants/coefficients of the compartmental models. Since weighted nonlinear regression often has to be repeated for many different data sets, the process of fitting data from compartmental systems can be very time consuming. Furthermore the minimization routine often converges to a local (as opposed to global) minimum. In this paper, we examine the possibility of using artificial neural networks instead of weighted nonlinear regression in order to estimate model parameters. We train simple feed-forward neural networks to produce as outputs the parameter values of a given model when kinetic data are fed to the networks' input layer. The artificial neural networks produce unbiased estimates and are orders of magnitude faster than regression algorithms. At noise levels typical of many real applications, the neural networks are found to produce lower variance estimates than weighted nonlinear regression in the estimation of parameters from mono- and biexponential models. These results are primarily due to the inability of weighted nonlinear regression to converge. These results establish that artificial neural networks are powerful tools for estimating parameters for simple compartmental models.

摘要

目前,房室分析中参数估计的首选工具是一种迭代程序;加权非线性回归。对于大量应用而言,观测数据可以拟合为指数之和,其参数与房室模型的速率常数/系数直接相关。由于加权非线性回归通常必须针对许多不同的数据集重复进行,因此拟合来自房室系统的数据的过程可能非常耗时。此外,最小化程序常常收敛到局部(而非全局)最小值。在本文中,我们研究了使用人工神经网络而非加权非线性回归来估计模型参数的可能性。我们训练简单的前馈神经网络,以便在将动力学数据输入到网络的输入层时,将给定模型的参数值作为输出产生。人工神经网络产生无偏估计,并且比回归算法快几个数量级。在许多实际应用典型的噪声水平下,发现神经网络在从单指数和双指数模型估计参数时,比加权非线性回归产生的方差估计更低。这些结果主要是由于加权非线性回归无法收敛。这些结果表明,人工神经网络是估计简单房室模型参数的强大工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验