Suppr超能文献

Prolonged cell-cycle arrest associated with altered cdc2 kinase in monocrotaline pyrrole-treated pulmonary artery endothelial cells.

作者信息

Thomas H C, Lamé M W, Morin D, Wilson D W, Segall H J

机构信息

Departments of Veterinary: Pathology, Microbiology and Immunology, and Molecular Biosciences, University of California at Davis, Davis, California, USA.

出版信息

Am J Respir Cell Mol Biol. 1998 Jul;19(1):129-42. doi: 10.1165/ajrcmb.19.1.2895.

Abstract

Monocrotaline pyrrole (MCTP), a metabolite of the pyrrolizidine alkaloid monocrotaline, is thought to initiate damage to pulmonary endothelial cells resulting in delayed but progressive pulmonary interstitial edema, vascular wall remodeling, and increasing pulmonary hypertension. MCTP was previously shown to inhibit pulmonary endothelial cell proliferation and cause cell-cycle arrest in vitro. To determine the persistence of arrest and better characterize the cell-cycle stage at which it occurs, bovine pulmonary artery endothelial cells (BPAEC) under differing growth conditions were exposed to low (5 microg/ml) or high (34.5 microg/ml) concentrations of MCTP for varying times. Flow cytometric cell-cycle analysis was coupled with Western blot and biochemical analysis of cdc2 kinase and measurements of cell size. MCTP treatment induced a G2 + M phase arrest in 48-h exposed confluent BPAEC that persisted for at least 28 d and was associated with continued cellular enlargement. A short-duration MCTP exposure of confluent (low and high concentration) and log phase (high concentration) BPAEC caused persistent cell-cycle arrest for 1 wk, whereas a low-concentration exposure in log phase cells resulted in cell-cycle arrest with reversal 96 h after exposure. Western blot examination revealed that by 24 h of MCTP exposure, the phosphorylation state of cdc2 was consistent with the inactive form of the kinase (confirmed by biochemical assay); this alteration persisted through at least 96 h of exposure. We conclude that MCTP induces a progressive irreversible endothelial cell dysfunction leading to inactivation of cdc2 kinase and irreversible cell-cycle arrest at the G2 checkpoint.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验