Suppr超能文献

鸟类副支气管肺中的气血二氧化碳平衡

Gas-blood CO2 equilibration in parabronchial lungs of birds.

作者信息

Meyer M, Worth H, Scheid P

出版信息

J Appl Physiol. 1976 Sep;41(3):302-9. doi: 10.1152/jappl.1976.41.3.302.

Abstract

We have conducted two experimental series in the chicken in order to study CO2 exchange in the parabronchial lungs of birds. In the first series, the animals were artifically ventilated and end-expired PCO2, PE'CO2, was measured and compared with mixed venous PCO2, PVCO2. On the average, PECO2 exceeded PVCO2 by 2.8 Torr. In the second series, rebreathing was used to investigate the mechanism of this positive (PE'-PV)CO2 difference. Lung gas PCO2 was found to equilibrate with PVCO2 if both CO2 and O2 exchange in the lung was abolished during rebreathing. Only if O2 uptake continued, we observed a positive gas-to-mixed venous blood PCO2 difference. The results suggest that positive gas-blood PCO2 differences both during rebreathing and steady-state ventilation are brought about by the Haldane effect. Model calculations show that in the homogeneous avian lung, unlike in the alveolar lung, the Haldane effect can produce positive (PE'-PV)CO2 differences during steady-state breathing due to the peculiarities of the crosscurrent arrangement and parabronchial ventilation and blood perfusion.

摘要

为了研究鸟类副支气管肺中的二氧化碳交换,我们在鸡身上进行了两个实验系列。在第一个系列中,对动物进行人工通气,并测量终末呼气二氧化碳分压(PE'CO2),并与混合静脉血二氧化碳分压(PVCO2)进行比较。平均而言,PECO2比PVCO2高2.8托。在第二个系列中,采用重复呼吸来研究这种正性(PE'-PV)二氧化碳差值的机制。发现在重复呼吸过程中,如果肺内的二氧化碳和氧气交换均被消除,肺内气体二氧化碳分压会与PVCO2达到平衡。只有当氧气摄取持续存在时,我们才观察到气体与混合静脉血之间存在正性二氧化碳分压差值。结果表明,重复呼吸和稳态通气过程中气体与血液之间的正性二氧化碳分压差值是由哈代效应引起的。模型计算表明,在均匀的鸟类肺中,与肺泡肺不同,由于交叉流排列以及副支气管通气和血液灌注的特殊性,哈代效应在稳态呼吸过程中可产生正性(PE'-PV)二氧化碳差值。

相似文献

1
Gas-blood CO2 equilibration in parabronchial lungs of birds.
J Appl Physiol. 1976 Sep;41(3):302-9. doi: 10.1152/jappl.1976.41.3.302.
2
Blood/gas equilibrium of carbon dioxide in lungs. A critical review.
Respir Physiol. 1980 Jan;39(1):1-31. doi: 10.1016/0034-5687(80)90011-0.
3
Blood-gas equilibration of CO2 and O2 in lungs of awake dogs during prolonged rebreathing.
J Appl Physiol Respir Environ Exerc Physiol. 1984 Nov;57(5):1354-9. doi: 10.1152/jappl.1984.57.5.1354.
4
Gas-blood PCO2 gradients during avian gas exchange.
J Appl Physiol. 1975 Sep;39(3):405-10. doi: 10.1152/jappl.1975.39.3.405.
5
Arterial-alveolar CO2 equilibration in exercising dogs during prolonged rebreathing.
J Appl Physiol (1985). 1985 May;58(5):1654-8. doi: 10.1152/jappl.1985.58.5.1654.
7
Ventilatory response to the PCO2 profile in chicken lungs.
Respir Physiol. 1980 Sep;41(3):307-21. doi: 10.1016/0034-5687(80)90079-1.
8
Gas-blood Pco2 and Po2 equilibration in a steady-state rebreathing dog preparation.
J Appl Physiol Respir Environ Exerc Physiol. 1984 May;56(5):1229-36. doi: 10.1152/jappl.1984.56.5.1229.
10
Pulmonary gas exchange in panting dogs.
J Appl Physiol (1985). 1989 Mar;66(3):1258-63. doi: 10.1152/jappl.1989.66.3.1258.

引用本文的文献

1
Unidirectional pulmonary airflow in vertebrates: a review of structure, function, and evolution.
J Comp Physiol B. 2016 Jul;186(5):541-52. doi: 10.1007/s00360-016-0983-3. Epub 2016 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验