Merkelbach D, Brandt L, Mertzlufft F
Klinik für Anästhesie, Intensivmedizin und Schmerztherapie, Stadt Wuppertal.
Anaesthesist. 1993 Oct;42(10):691-701.
The Christiansen-Douglas-Haldane effect describes the reduced CO2 binding capacity of oxygenated compared to deoxygenated haemoglobin. Under the condition of a "closed system", for example hyperoxic apnoea after adequate preoxygenation (continuous O2 uptake with lack of CO2 delivery), specific effects on the arterial and mixed venous blood gas status, due to the Haldane effect, are seen: within 30 s after onset of apnoea, "paradoxical pCO2" (paCO2 exceeds pvCO2) and "pH reversal" (pHa falls under pHv) can be observed. It was the aim of this study to demonstrate how fast arterial and mixed venous pCO2 and pH normalize when a change from apnoea ("closed system") to controlled ventilation ("open system") takes place. METHODS. 12 patients (ASA II-IV, NYHA II-III) scheduled for coronary artery bypass grafting were studied. Premedication consisted of flunitrazepam 2.0 mg p.o. given the evening before operation and another 2.0 mg p.o. given 90-120 min before induction of anaesthesia. Routine preparation for induction consisted of venous and arterial cannulas, pulmonary artery catheter and continuous pulse oximetry. Following standardized preoxygenation, induction of anaesthesia was performed with fentanyl, pancuronium and etomidate. After cessation of spontaneous respiration, controlled ventilation was continued with 100% O2 until intubation. Intubation and insertion of stomach tube and oesophageal temperature probe were undertaken after exactly 2 min. After reconnection to the semi-closed circle breathing system, controlled ventilation was continued with 100% O2. Eighteen arterial (a) and 18 mixed-venous (v) blood samples were drawn simultaneously in a sequential manner immediately before and during the last 20 s of apnoea, as well as within 4 min after onset of controlled ventilation (Table 1). The pO2 (mmHg), pCO2 (mmHg) and pH were determined using a Stat Profile 5 blood gas analyser. RESULTS. During apnoea and within the first 35 s of controlled ventilation the paO2 showed a total decrease of 131.5 mmHg that was followed by an almost linear increase of 29.7 mmHg/min (Fig. 1a). In the course of apnoea and controlled ventilation the pvO2 remained relatively stable, with values ranging from 42 to 43 mmHg (Fig. 1b). During apnoea the paCO2 showed an increase of 12.5 mmHg that was followed by a biphasic decrease (first 13.8 mmHg/min and then 0.75 mmHg/min) beginning 15 s after the onset of controlled ventilation (Fig. 2a). With an increase of 4.2 mmHg, the pvCO2 showed about a third of the increase of the paCO2 during apnoea, reaching a maximum 45 s after the onset of controlled ventilation and then being followed by a linear decrease of 0.86 mmHg/min (Fig.2b). Comparing the course of paCO2 and pvCO2 during apnoea as well as during the period of controlled ventilation, pHa and pHv changed in a reciprocal manner (Fig. 3a/b). The so-called normalization of pCO2 (paCO2 falls under pvCO2) and pH (pHa exceeds pHv) began 18.2 s and 23.2 s respectively after the onset of controlled ventilation (Fig. 4a, b). CONCLUSION. Considering the expected decrease of paO2 during hyperoxic apnoea, insufficient pulmonary N2 elimination prior to the onset of apnoea, as well as direct N2 delivery into the alveoli, due to the so-called a ventilatory mass flow, will limit unrestricted pulmonary O2 uptake. The continuing decrease of the paCO2 after the onset of controlled ventilation can be regarded as indirect proof of a ventilatory mass flow. The course of pCO2 and pH after the onset of controlled ventilation shows that normalization in arterial and mixed-venous blood gas status takes place in about 18.2 s after the cessation of apnoea.
克里斯蒂安森 - 道格拉斯 - 霍尔丹效应描述了与脱氧血红蛋白相比,氧合血红蛋白结合二氧化碳的能力降低。在“封闭系统”条件下,例如在充分预充氧(持续摄取氧气但缺乏二氧化碳排出)后的高氧性呼吸暂停,由于霍尔丹效应,可观察到对动脉血和混合静脉血气状态的特定影响:呼吸暂停开始后30秒内,可观察到“矛盾性pCO₂”(动脉血pCO₂超过混合静脉血pCO₂)和“pH反转”(动脉血pH低于混合静脉血pH)。本研究的目的是证明当从呼吸暂停(“封闭系统”)转变为控制通气(“开放系统”)时,动脉血和混合静脉血的pCO₂和pH值恢复正常的速度有多快。方法。研究了12例计划行冠状动脉搭桥术的患者(美国麻醉医师协会分级II - IV级,纽约心脏协会心功能分级II - III级)。术前用药包括术前晚口服氟硝西泮2.0 mg,麻醉诱导前90 - 120分钟再口服2.0 mg。常规诱导准备包括静脉和动脉插管、肺动脉导管和持续脉搏血氧饱和度监测。在标准化预充氧后,用芬太尼、潘库溴铵和依托咪酯进行麻醉诱导。自主呼吸停止后,持续用100%氧气进行控制通气直至插管。在正好2分钟后进行插管、插入胃管和食管温度探头。重新连接到半封闭环路呼吸系统后,继续用100%氧气进行控制通气。在呼吸暂停的最后20秒之前和期间以及控制通气开始后4分钟内,以序贯方式同时采集18份动脉血(a)和18份混合静脉血(v)样本(表1)。使用Stat Profile 5血气分析仪测定pO₂(mmHg)、pCO₂(mmHg)和pH值。结果。在呼吸暂停期间以及控制通气的前35秒内,动脉血氧分压(paO₂)总共下降了131.5 mmHg,随后以几乎线性的速度增加,增加速度为29.7 mmHg/分钟(图1a)。在呼吸暂停和控制通气过程中,混合静脉血氧分压(pvO₂)保持相对稳定,值在42至43 mmHg之间(图1b)。在呼吸暂停期间,动脉血二氧化碳分压(paCO₂)增加了12.5 mmHg,随后在控制通气开始15秒后出现双相下降(首先是13.8 mmHg/分钟,然后是0.75 mmHg/分钟)(图2a)。混合静脉血二氧化碳分压(pvCO₂)增加了4.2 mmHg,约为呼吸暂停期间动脉血二氧化碳分压增加量的三分之一,在控制通气开始后45秒达到最大值,然后以0.86 mmHg/分钟的线性速度下降(图2b)。比较呼吸暂停期间以及控制通气期间动脉血二氧化碳分压和混合静脉血二氧化碳分压的变化过程,动脉血pH(pHa)和混合静脉血pH(pHv)呈相反变化(图3a/b)。所谓的pCO₂正常化(动脉血pCO₂低于混合静脉血pCO₂)和pH正常化(动脉血pH超过混合静脉血pH)分别在控制通气开始后18.2秒和23.2秒开始(图4a,b)。结论。考虑到高氧性呼吸暂停期间预期的动脉血氧分压下降,呼吸暂停开始前肺内氮气清除不足,以及由于所谓的通气质量流导致氮气直接进入肺泡,将限制无限制的肺内氧气摄取。控制通气开始后动脉血二氧化碳分压的持续下降可被视为通气质量流的间接证据。控制通气开始后pCO₂和pH的变化过程表明,呼吸暂停停止后约18.2秒,动脉血和混合静脉血气状态恢复正常。