Suppr超能文献

Elucidation of mitochondrial effects by tetrahydroaminoacridine (tacrine) in rat, dog, monkey and human hepatic parenchymal cells.

作者信息

Robertson D G, Braden T K, Urda E R, Lalwani N D, de la Iglesia F A

机构信息

Department of Pathology and Experimental Toxicology, Parke-Davis Pharmaceutical Research, Division of Warner Lambert Company, Ann Arbor, MI 48106-1047, USA.

出版信息

Arch Toxicol. 1998 May;72(6):362-71. doi: 10.1007/s002040050515.

Abstract

Tetrahydroaminoacridine (tacrine) causes morphological and functional changes in the endoplasmic reticulum, ribosomes, and mitochondria in the liver of humans and animals. In order to investigate species differences as well as to understand the morphological changes, we examined the effects of tacrine on respiration and electron transport in mitochondria isolated from rat, dog, monkey, and human liver. Tacrine produced significantly decreased respiratory control ratios (RCR) in all species at concentrations ranging from 5 to 25 microg/ml. Human mitochondria were more sensitive to tacrine effects with RCR decreased 24% at 5 microg/ml while other species were unaffected at this concentration. The tacrine effects were characterized by increased hepatic mitochondrial State 4 respiration in rats and decreased State 3 respiration in humans. Mitochondria from aged rats were more sensitive to the effects of tacrine than mitochondria from young animals, with significantly decreased RCR at 10 microg/ml in aged rats while mitochondria from young rats were unaffected at this concentration. Concomitant with the respiratory changes, mitochondrial DNA synthesis was impaired. Since tacrine undergoes extensive biotransformation, we also explored the possibility that metabolites could exert detrimental effects. The ranking order of potency for decreasing RCR caused by monohydroxylated metabolites was: tacrine > 4-OH and 7-OH > 2-OH, 1-OH, and velnacrine with the latter group of metabolites having no effect on mitochondrial respiration at concentrations up to 50 microg/ml. In vivo administration of 20 mg/kg tacrine to rats for up to 20 days caused a paradoxical increase in RCR and P/O on Day 1 and decreased RCR on Days 9 and 20, the later findings being consistent with in vitro data. From these data we propose that tacrine does not necessarily have to be metabolized to exert effects on mitochondria at different sites in the electron transport chain that differ among species. These effects are exacerbated in mitochondria from older animals and humans appear to be more sensitive than the laboratory animals studied.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验