Liu Z M, Kolattukudy P E
Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
J Bacteriol. 1998 Jul;180(14):3592-7. doi: 10.1128/JB.180.14.3592-3597.1998.
The germinating conidia of many phytopathogenic fungi on hosts must differentiate into an infection structure called the appressorium in order to penetrate their hosts. Chemical signals, such as the host's surface wax or fruit ripening hormone, ethylene, trigger germination and appressorium formation of the avocado pathogen Colletotrichum gloeosporioides only after the conidia are in contact with a hard surface. What role this contact plays is unknown. Here, we describe isolation of genes expressed during the early stage of hard-surface treatment by a differential-display method and report characterization of one of these cloned genes, chip1 (Colletotrichum hard-surface induced protein 1 gene), which encodes a ubiquitin-conjugating enzyme. RNA blots clearly showed that it is induced by hard-surface contact and that ethylene treatment enhanced this induction. The predicted open reading frame (ubc1Cg) would encode a 16.2-kDa ubiquitin-conjugating enzyme, which shows 82% identity to the Saccharomyces cerevisiae UBC4-UBC5 E2 enzyme, comprising a major part of total ubiquitin-conjugating activity in stressed yeast cells. UBC1Cg can complement the proteolysis deficiency of the S. cerevisiae ubc4 ubc5 mutant, indicating that ubiquitin-dependent protein degradation is involved in conidial germination and appressorial differentiation.
许多植物病原真菌在宿主上的萌发分生孢子必须分化成一种称为附着胞的侵染结构,以便穿透宿主。化学信号,如宿主表面蜡质或果实成熟激素乙烯,只有在分生孢子与坚硬表面接触后,才会触发鳄梨病原菌胶孢炭疽菌的萌发和附着胞形成。这种接触起什么作用尚不清楚。在这里,我们描述了通过差异显示法分离在硬表面处理早期表达的基因,并报告了其中一个克隆基因chip1(炭疽菌硬表面诱导蛋白1基因)的特征,该基因编码一种泛素结合酶。RNA印迹清楚地表明,它是由硬表面接触诱导的,乙烯处理增强了这种诱导作用。预测的开放阅读框(ubc1Cg)将编码一种16.2 kDa的泛素结合酶,与酿酒酵母UBC4-UBC5 E2酶具有82%的同一性,该酶在应激酵母细胞中占总泛素结合活性的主要部分。UBC1Cg可以弥补酿酒酵母ubc4 ubc5突变体的蛋白水解缺陷,表明泛素依赖性蛋白降解参与分生孢子萌发和附着胞分化。