Chu B, Zhong R, Soncin F, Stevenson M A, Calderwood S K
Department of Adult Oncology, Dana Farber Cancer Institute and Joint Center for Radiation Therapy, Harvard Medical School, Boston, Massachusetts 02115, USA.
J Biol Chem. 1998 Jul 17;273(29):18640-6. doi: 10.1074/jbc.273.29.18640.
Heat shock factor 1 (HSF1) is the key transcriptional regulator of the heat shock genes that protect cells from environmental stress. However, because heat shock gene expression is deleterious to growth and development, we have examined mechanisms for HSF1 repression at growth temperatures, focusing on the role of phosphorylation. Mitogen-activated protein kinases (MAPKs) of the ERK family phosphorylate HSF1 and represses transcriptional function. The mechanism of repression involves initial phosphorylation by MAP kinase on serine 307, which primes HSF1 for secondary phosphorylation by glycogen synthase kinase 3 on a key residue in repression (serine 303). In vivo expression of glycogen synthase kinase 3 alpha or beta thus represses HSF1 through phosphorylation of serine 303. HSF1 is also phosphorylated by MAPK in vitro on a second residue (serine 363) adjacent to activation domain 1, and this residue is additionally phosphorylated by protein kinase C. In vivo, HSF1 is repressed through phosphorylation of this residue by protein kinase Calpha or -zeta but not MAPK. Regulation at 37 degrees C, therefore, involves the action of three protein kinase cascades that repress HSF1 through phosphorylation of serine residues 303, 307, and 363 and may promote growth by suppressing the heat shock response.
热休克因子1(HSF1)是热休克基因的关键转录调节因子,这些基因可保护细胞免受环境应激。然而,由于热休克基因表达对生长和发育有害,我们研究了在生长温度下HSF1被抑制的机制,重点关注磷酸化的作用。细胞外信号调节激酶(ERK)家族的丝裂原活化蛋白激酶(MAPK)使HSF1磷酸化并抑制其转录功能。抑制机制涉及MAP激酶首先使丝氨酸307磷酸化,这使HSF1为糖原合酶激酶3在抑制关键残基(丝氨酸303)上的二次磷酸化做好准备。因此,糖原合酶激酶3α或β的体内表达通过丝氨酸303的磷酸化抑制HSF1。在体外,HSF1还在与激活域1相邻的第二个残基(丝氨酸363)上被MAPK磷酸化,并且该残基还被蛋白激酶C磷酸化。在体内,HSF1通过蛋白激酶Cα或-ζ而非MAPK使该残基磷酸化而被抑制。因此,在37摄氏度时的调节涉及三个蛋白激酶级联反应的作用,这些级联反应通过丝氨酸残基303、307和363的磷酸化抑制HSF1,并可能通过抑制热休克反应促进生长。