Segu V B, Li G, Metz S A
Section of Endocrinology and the Medical Service, William S. Middleton Memorial Veterans Administration Hospital, Madison, WI, USA.
Metabolism. 1998 Jul;47(7):824-30. doi: 10.1016/s0026-0495(98)90120-2.
Although assessments of metabolic activation are central to studies of beta-cell function, available techniques are tedious, insensitive, and/or require cell disruption. We have investigated the use of a new water-soluble tetrazolium salt, MTS (3-[4,5,dimethylthiazol-2-yl]-5-[3-carboxymethoxy-phenyl]-2-[4- sulfophenyl]-2H-tetrazolium, inner salt), in the presence of phenazine methosulfate (PMS), an intermediate electron acceptor that amplifies its signal (fluorescence at 490 nm). During static incubations of glucose-responsive (HIT-T15 or INS-1) dispersed beta cells with increasing glucose concentrations, there was a progressive increase in MTS reduction, with a maximum signal-to-noise (S/N) ratio of 24 with HIT-T15 cells and 10 with INS-1 cells. This was associated with, but not attributable to, parallel increases in insulin secretion. Pure mitochondrial fuels (alpha-ketoisocaproate [KIC], methyl pyruvate [MP], or L-glutamine [GLN] + L-leucine [LEU]) also increased the reduction of MTS in INS-1 cells (6.5-, 4.8-, and 14.4-fold, respectively), but generally less than glucose, suggesting a major role of glycolysis in the signal induced by glucose. Inhibitors of glucose metabolism (mannoheptulose [MH], lodoacetate [IA], or 2-deoxyglucose [2-DG]) markedly reduced the glucose-stimulated MTS signal. In comparison to another tetrazolium compound, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), MTS assay provided a better S/N ratio with glucose or other nutrient secretagogues. Extant theory holds that activation of mitochondrial dehydrogenases by increments in Ca2+ influx couples glycolysis to mitochondrial oxidation of glucose-derived fuels. However, reduction of fuel-induced calcium influx (by Ca2+-free medium or diazoxide [DZX]) or direct stimulation of calcium influx (by 40 mmol/L K+) failed to significantly modulate the signal, arguing against this theory. We conclude that the MTS assay is a facile test that reflects the global metabolic function of insulin-secreting beta cells. Furthermore, since this assay does not require disruption of cells to solubilize the formazan product, and therefore also allows concomitant measurement of insulin secretion, it offers considerable advantages over earlier methods.
尽管代谢激活评估是β细胞功能研究的核心,但现有技术繁琐、不灵敏,且/或需要细胞破碎。我们研究了一种新的水溶性四唑盐MTS(3-[4,5-二甲基噻唑-2-基]-5-[3-羧基甲氧基苯基]-2-[4-磺基苯基]-2H-四唑,内盐)在吩嗪硫酸甲酯(PMS)存在下的应用,PMS是一种中间电子受体,可放大其信号(490nm处的荧光)。在葡萄糖反应性(HIT-T15或INS-1)分散的β细胞与葡萄糖浓度增加的静态孵育过程中,MTS还原逐渐增加,HIT-T15细胞的最大信噪比(S/N)为24,INS-1细胞为10。这与胰岛素分泌的平行增加相关,但并非由其引起。纯线粒体燃料(α-酮异己酸[KIC]、丙酮酸甲酯[MP]或L-谷氨酰胺[GLN]+L-亮氨酸[LEU])也增加了INS-1细胞中MTS的还原(分别为6.5倍、4.8倍和14.4倍),但通常低于葡萄糖,表明糖酵解在葡萄糖诱导的信号中起主要作用。葡萄糖代谢抑制剂(甘露庚酮糖[MH]、碘乙酸[IA]或2-脱氧葡萄糖[2-DG])显著降低了葡萄糖刺激的MTS信号。与另一种四唑化合物3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑溴盐(MTT)相比,MTS测定法在葡萄糖或其他营养促分泌剂存在下具有更好的信噪比。现有理论认为,Ca2+内流增加激活线粒体脱氢酶,将糖酵解与葡萄糖衍生燃料的线粒体氧化耦合。然而,减少燃料诱导的钙内流(通过无钙培养基或二氮嗪[DZX])或直接刺激钙内流(通过40mmol/L K+)未能显著调节该信号,这与该理论相悖。我们得出结论,MTS测定法是一种简便的测试方法,可反映胰岛素分泌β细胞的整体代谢功能。此外,由于该测定法不需要破碎细胞来溶解甲臜产物,因此还允许同时测量胰岛素分泌,它比早期方法具有相当大的优势。