Suppr超能文献

GM1 ganglioside-induced modulation of opioid receptor-mediated functions.

作者信息

Crain S M, Shen K F

机构信息

Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

出版信息

Ann N Y Acad Sci. 1998 Jun 19;845:106-25. doi: 10.1111/j.1749-6632.1998.tb09665.x.

Abstract

Electrophysiologic studies of dorsal-root ganglion (DRG) neurons in culture have demonstrated both excitatory (Gs-coupled) as well as inhibitory (Gi/Go-coupled) opioid receptor-mediated actions. Brief treatment of DRG neurons with cholera toxin-beta which binds specifically to GM1 sites on neuronal membranes, selectively blocks opioid excitatory but not inhibitory effects. Conversely, after brief treatment of DRG neurons with GM1, but not with GM2, GM3, or other related gangliosides, the threshold concentration of opioid agonists for eliciting excitatory effects is markedly decreased from nM to pM-fM levels and opioid antagonists, for example, naloxone (NLX), at low concentrations paradoxically elicit excitatory effects. These studies suggest that the excitatory opioid supersensitivity of GM1-treated DRG neurons is due primarily to increased efficacy of excitatory opioid-receptor activation of Gs. Recent studies of cloned delta opioid receptors transfected into CHO cells suggest that this supersensitivity of GM1-treated DRG neurons may be further augmented by rapid conversion of many opioid receptors from a Gi/Go-coupled inhibitory mode to a Gs-coupled excitatory mode. The opioid excitatory supersensitivity elicited in DRG neurons by acute elevation of exogenous GM1 provides novel insights into mechanisms underlying opioid tolerance and dependence, since remarkably similar supersensitivity occurs in DRG and other neurons after chronic treatment with morphine or other opioid agonists that upregulate endogenous GM1.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验