Lee S M, Lee H J, Yoo C H, Youn D H, Cha I W
Department of Electronic Engineering, Yonsei University, Sudaemun-gu, Seoul, Korea.
J Acoust Soc Am. 1998 Jul;104(1):248-54. doi: 10.1121/1.423276.
The filtered-x LMS algorithm and its modified versions have been successfully applied in suppressing acoustic noise such as single and multiple tones and broadband random noise. This paper presents an adaptive algorithm based on the filtered-x LMS algorithm which may be applied in attenuating tonal acoustic noise. In the proposed method, the weights of the adaptive filter and estimation of the phase shift due to the acoustic path from a loudspeaker to a microphone are computed simultaneously for optimal control. The algorithm possesses advantages over other filtered-x LMS approaches in three aspects: (1) each frequency component is processed separately using an adaptive filter with two coefficients, (2) the convergence parameter for each sinusoid can be selected independently, and (3) the computational load can be reduced by eliminating the convolution process required to obtain the filtered reference signal. Simulation results for a single-input/single-output (SISO) environment demonstrate that the proposed method is robust to the changes of the acoustic path between the actuator and the microphone and outperforms the filtered-x LMS algorithm in simplicity and convergence speed.