Suppr超能文献

麻醉剂是否存在特定受体?醇类和脂肪酸对萤火虫荧光素酶相变和生物发光的相反作用。

Is there a specific receptor for anesthetics? Contrary effects of alcohols and fatty acids on phase transition and bioluminescence of firefly luciferase.

作者信息

Ueda I, Suzuki A

机构信息

Anesthesia 112A, Department of Veterans Administration Medical Center, and University of Utah School of Medicine, Salt Lake City, Utah 84148 USA.

出版信息

Biophys J. 1998 Aug;75(2):1052-7. doi: 10.1016/S0006-3495(98)77594-0.

Abstract

Firefly luciferase emits a burst of light when mixed with ATP and luciferin (L) in the presence of oxygen. This study compared the effects of long-chain n-alcohols (1-decanol to 1-octadecanol) and fatty acids (decanoic to octadecanoic acids) on firefly luciferase. Fatty acids were stronger inhibitors of firefly luciferase than n-alcohols. Myristyl alcohol inhibited the light intensity by 50% (IC50) at 13.6 microM, whereas the IC50 of myristic acid was 0.68 microM. According to the Meyer-Overton rule, fatty acids are approximately 12,000-fold stronger inhibitors than corresponding alcohols. The Lineweaver-Burk plot showed that myristic acid inhibited firefly luciferase in competition with luciferin, whereas myristyl alcohol inhibited it noncompetitively. The differential scanning calorimetry (DSC) showed that an irreversible thermal transition occurred at approximately 39 degrees C with a transition DeltaHcal of 1.57 cal g-1. The ligand effects on the transition were evaluated by the temperature where the irreversible change is half completed. Alcohols decreased whereas fatty acids increased the thermal transition temperature of firefly luciferase. Koshland's transition-state theory (Science. 1963. 142:1533-1541) states that ligands that bind to the substrate-recognition sites induce the enzyme at a transition state, which is more stabilized than the native state against thermal perturbation. The long-chain fatty acids bound to the luciferin recognition site and stabilized the protein conformation at the transition state, which resisted thermal denaturation. Eyring's unfolding theory (Science. 1966. 154:1609-1613) postulates that anesthetics and alcohols bind nonspecifically to interfacial areas of proteins and reversibly unfold the conformation. The present results showed that alcohols do not compete with luciferin and inhibit firefly luciferase nonspecifically by unfolding the protein. Fatty acids are receptor binders and stabilize the protein conformation at the transition state.

摘要

萤火虫荧光素酶在氧气存在下与三磷酸腺苷(ATP)和荧光素(L)混合时会发出一阵光。本研究比较了长链正构醇(1 - 癸醇至1 - 十八醇)和脂肪酸(癸酸至十八烷酸)对萤火虫荧光素酶的影响。脂肪酸对萤火虫荧光素酶的抑制作用比正构醇更强。肉豆蔻醇在13.6微摩尔时使光强度降低50%(半数抑制浓度,IC50),而肉豆蔻酸的IC50为0.68微摩尔。根据迈耶 - 奥弗顿规则,脂肪酸作为抑制剂的效力比相应的醇大约强12000倍。双倒数作图(Lineweaver - Burk plot)表明,肉豆蔻酸与荧光素竞争抑制萤火虫荧光素酶,而肉豆蔻醇则是非竞争性抑制。差示扫描量热法(DSC)显示,在约39℃发生不可逆的热转变,转变焓变(ΔHcal)为1.57卡/克。通过不可逆变化完成一半时的温度来评估配体对转变的影响。醇类降低而脂肪酸升高萤火虫荧光素酶的热转变温度。科什兰德的过渡态理论(《科学》,1963年,第142卷,第1533 - 1541页)指出,与底物识别位点结合的配体会诱导酶处于过渡态,该状态比天然状态更稳定,能抵抗热扰动。长链脂肪酸与荧光素识别位点结合并在过渡态稳定蛋白质构象,从而抵抗热变性。艾林的解折叠理论(《科学》,1966年,第154卷,第1609 - 1613页)假定麻醉剂和醇类非特异性地结合到蛋白质的界面区域并可逆地使构象解折叠。目前的结果表明,醇类不与荧光素竞争,而是通过使蛋白质解折叠非特异性地抑制萤火虫荧光素酶。脂肪酸是受体结合剂,并在过渡态稳定蛋白质构象。

相似文献

2
Do anesthetics act by competitive binding to specific receptors? Phase transition of firefly luciferase.
Toxicol Lett. 1998 Nov 23;100-101:405-11. doi: 10.1016/s0378-4274(98)00214-8.
3
Irreversible phase transition of firefly luciferase: contrasting effects of volatile anesthetics and myristic acid.
Biochim Biophys Acta. 1998 May 8;1380(3):313-9. doi: 10.1016/s0304-4165(97)00159-1.
5
Specific and non-specific binding of long-chain fatty acids to firefly luciferase: cutoff at octanoate.
Biochim Biophys Acta. 1999 Jan 4;1426(1):143-50. doi: 10.1016/s0304-4165(98)00148-2.
6
Ethanol unfolds firefly luciferase while competitive inhibitors antagonize unfolding: DSC and FTIR analyses.
J Pharm Biomed Anal. 1994 Aug;12(8):969-75. doi: 10.1016/0731-7085(94)00045-x.
7
Inhibition of firefly luciferase by alkane analogues.
Biochim Biophys Acta. 2005 Jan 18;1721(1-3):124-9. doi: 10.1016/j.bbagen.2004.10.009. Epub 2004 Oct 28.
8
Temperature-dependent effects of high pressure on the bioluminescence of firefly luciferase.
Biophys J. 1994 Jun;66(6):2107-10. doi: 10.1016/S0006-3495(94)81005-7.
9

引用本文的文献

2
A New Hypothesis for Alzheimer's Disease: The Lipid Invasion Model.
J Alzheimers Dis Rep. 2022 Mar 25;6(1):129-161. doi: 10.3233/ADR-210299. eCollection 2022.
3
Resurrecting the ancient glow of the fireflies.
Sci Adv. 2020 Dec 2;6(49). doi: 10.1126/sciadv.abc5705. Print 2020 Dec.
4
Atomistic study of lipid membranes containing chloroform: looking for a lipid-mediated mechanism of anesthesia.
PLoS One. 2013;8(1):e52631. doi: 10.1371/journal.pone.0052631. Epub 2013 Jan 2.
6
Inhibition of firefly luciferase by general anesthetics: effect on in vitro and in vivo bioluminescence imaging.
PLoS One. 2012;7(1):e30061. doi: 10.1371/journal.pone.0030061. Epub 2012 Jan 10.
7
Firefly luciferase: an adenylate-forming enzyme for multicatalytic functions.
Cell Mol Life Sci. 2010 Feb;67(3):387-404. doi: 10.1007/s00018-009-0170-8. Epub 2009 Oct 27.
8
Dynamics of firefly luciferase inhibition by general anesthetics: Gaussian and anisotropic network analyses.
Biophys J. 2007 Sep 15;93(6):1895-905. doi: 10.1529/biophysj.106.102780. Epub 2007 May 18.
9
Low dose acute alcohol effects on GABA A receptor subtypes.
Pharmacol Ther. 2006 Nov;112(2):513-28. doi: 10.1016/j.pharmthera.2006.05.004. Epub 2006 Jul 11.

本文引用的文献

1
Application of a Theory of Enzyme Specificity to Protein Synthesis.
Proc Natl Acad Sci U S A. 1958 Feb;44(2):98-104. doi: 10.1073/pnas.44.2.98.
2
EFFECTS OF DIETHYL ETHER AND HALOTHANE ON FIREFLY LUCIFERIN BIOLUMINESCENCE.
Anesthesiology. 1965 Sep-Oct;26:603-6. doi: 10.1097/00000542-196509000-00003.
3
CORRELATION OF STRUCTURE AND FUNCTION IN ENZYME ACTION.
Science. 1963 Dec 20;142(3599):1533-41. doi: 10.1126/science.142.3599.1533.
4
Irreversible phase transition of firefly luciferase: contrasting effects of volatile anesthetics and myristic acid.
Biochim Biophys Acta. 1998 May 8;1380(3):313-9. doi: 10.1016/s0304-4165(97)00159-1.
5
Cloning and sequencing of a cDNA for firefly luciferase from Photuris pennsylvanica.
Biochim Biophys Acta. 1997 Apr 25;1339(1):39-52. doi: 10.1016/s0167-4838(96)00211-7.
6
Interaction with D-glucose and thermal denaturation of yeast hexokinase B: A DSC study.
J Biochem. 1997 Mar;121(3):568-77. doi: 10.1093/oxfordjournals.jbchem.a021623.
7
Negative entropy of halothane binding to protein: 19F-NMR with a novel cell.
Biochim Biophys Acta. 1997 Mar 15;1334(2-3):117-22. doi: 10.1016/s0304-4165(97)00014-7.
9
Kinetic study on the irreversible thermal denaturation of lentil lectin.
Biochem Mol Biol Int. 1996 Jul;39(4):647-56. doi: 10.1080/15216549600201711.
10
Thermodynamics of anesthetic/protein interactions. Temperature studies on firefly luciferase.
Biophys J. 1993 Apr;64(4):1264-71. doi: 10.1016/S0006-3495(93)81491-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验