Sziráki I, Mohanakumar K P, Rauhala P, Kim H G, Yeh K J, Chiueh C C
Unit on Neurodegeneration and Neuroprotection, Laboratory of Clinical Science, NIMH, NIH, Bethesda, MD 20892-1264, USA.
Neuroscience. 1998 Aug;85(4):1101-11. doi: 10.1016/s0306-4522(97)00660-x.
It has been suggested that transition metals such as iron and manganese produce oxidative injury to the dopaminergic nigrostriatal system. which may play a critical role in the pathogenesis of Parkinson's disease. Intranigral infusion of ferrous citrate (0 to 8.4 nmol, i.n.) acutely increased lipid peroxidation in the substantia nigra and dopamine turnover in the caudate nucleus. Subsequently, it caused a severe depletion of dopamine levels in the rat caudate nucleus. In contrast to iron's pro-oxidant effect, manganese (up to 30 nmol, i.n.) causes neither lipid peroxidation nor nigral injury/dopamine depletion. Manganese (1.05 to 4.2 nmol, i.n.) dose-dependently protected nigral neurons from iron-induced oxidative injury and dopamine depletion. Manganese also suppressed acute increase in dopamine turnover and contralateral turning behaviour induced by iron. In brain homogenates manganese (0 to 10 microM) concentration-dependently inhibited propagation of lipid peroxidation caused by iron (0 to 5 microM). Without the contribution of manganese-superoxide dismutase manganese was still effective in sodium azide and/or heat-pretreated brain homogenates. Surprisingly, iron but not manganese, catalysed the Fenton reaction or the conversion of hydrogen peroxide to hydroxyl radicals. The results indicate that iron and manganese are two transition metals mediating opposite effects in the nigrostriatal system, as pro-oxidant and antioxidant, respectively. In conclusion, intranigral infusion of iron, but not manganese, provides an animal model for studying the pathophysiological role of oxidant and oxidative stress in nigrostriatal degeneration and Parkinsonism. The present results further suggest that the atypical antioxidative properties of manganese may protect substantia nigra compacta neurons from iron-induced oxidative stress.
有人提出,铁和锰等过渡金属会对多巴胺能黑质纹状体系统产生氧化损伤,这可能在帕金森病的发病机制中起关键作用。向黑质内注射柠檬酸亚铁(0至8.4纳摩尔,脑内注射)可急性增加黑质中的脂质过氧化以及尾状核中的多巴胺周转率。随后,它导致大鼠尾状核中多巴胺水平严重耗竭。与铁的促氧化作用相反,锰(高达30纳摩尔,脑内注射)既不会引起脂质过氧化,也不会导致黑质损伤/多巴胺耗竭。锰(1.05至4.2纳摩尔,脑内注射)剂量依赖性地保护黑质神经元免受铁诱导的氧化损伤和多巴胺耗竭。锰还抑制了铁诱导的多巴胺周转率急性增加和对侧旋转行为。在脑匀浆中,锰(0至10微摩尔)浓度依赖性地抑制铁(0至5微摩尔)引起的脂质过氧化的传播。在没有锰超氧化物歧化酶的情况下,锰在叠氮化钠和/或热预处理的脑匀浆中仍然有效。令人惊讶的是,铁而不是锰催化了芬顿反应或过氧化氢向羟基自由基的转化。结果表明,铁和锰是两种在黑质纹状体系统中发挥相反作用的过渡金属,分别作为促氧化剂和抗氧化剂。总之,向黑质内注射铁而不是锰,为研究氧化剂和氧化应激在黑质纹状体变性和帕金森综合征中的病理生理作用提供了一种动物模型。目前的结果进一步表明,锰的非典型抗氧化特性可能保护黑质致密部神经元免受铁诱导的氧化应激。