McKeown M J, Humphries C, Achermann P, Borbély A A, Sejnowski T J
Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92186-5800, USA.
J Sleep Res. 1998;7 Suppl 1:48-56. doi: 10.1046/j.1365-2869.7.s1.8.x.
A new statistical method is described for detecting state changes in the electroencephalogram (EEG), based on the ongoing relationships between electrode voltages at different scalp locations. An EEG sleep recording from one NREM-REM sleep cycle from a healthy subject was used for exploratory analysis. A dimensionless function defined at discrete times ti, u(ti), was calculated by determining the log-likelihood of observing all scalp electrode voltages under the assumption that the data can be modeled by linear combinations of stationary relationships between derivations. The u(ti), calculated by using independent component analysis, provided a sensitive, but non-specific measure of changes in the global pattern of the EEG. In stage 2, abrupt increases in u(ti) corresponded to sleep spindles. In stages 3 and 4, low frequency (approximately equal to 0.6 Hz) oscillations occurred in u(ti) which may correspond to slow oscillations described in cellular recordings and the EEG of sleeping cats. In stage 4 sleep, additional irregular very low frequency (approximately equal to 0.05-0.2 Hz) oscillations were observed in u(ti) consistent with possible cyclic changes in cerebral blood flow or changes of vigilance and muscle tone. These preliminary results suggest that the new method can detect subtle changes in the overall pattern of the EEG without the necessity of making tenuous assumptions about stationarity.
本文描述了一种基于不同头皮位置电极电压之间的动态关系来检测脑电图(EEG)状态变化的新统计方法。使用来自一名健康受试者一个非快速眼动-快速眼动睡眠周期的EEG睡眠记录进行探索性分析。通过在假设数据可以由导数之间的平稳关系的线性组合建模的情况下,确定观察所有头皮电极电压的对数似然性,计算在离散时间ti定义的无量纲函数u(ti)。通过使用独立成分分析计算得到的u(ti),提供了一种对EEG全局模式变化敏感但非特异性的测量方法。在第2阶段,u(ti)的突然增加对应于睡眠纺锤波。在第3和第4阶段,u(ti)中出现低频(约等于0.6 Hz)振荡,这可能对应于细胞记录和睡眠猫的EEG中描述的慢振荡。在第4阶段睡眠中,在u(ti)中观察到额外的不规则极低频(约等于0.05 - 0.2 Hz)振荡,这与脑血流的可能周期性变化或警觉性和肌张力的变化一致。这些初步结果表明,新方法可以检测EEG整体模式中的细微变化,而无需对平稳性做出牵强的假设。