Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA.
Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA.
Neuroimage. 2018 Dec;183:47-61. doi: 10.1016/j.neuroimage.2018.08.001. Epub 2018 Aug 4.
There is a growing interest in neuroscience in assessing the continuous, endogenous, and nonstationary dynamics of brain network activity supporting the fluidity of human cognition and behavior. This non-stationarity may involve ever-changing formation and dissolution of active cortical sources and brain networks. However, unsupervised approaches to identify and model these changes in brain dynamics as continuous transitions between quasi-stable brain states using unlabeled, noninvasive recordings of brain activity have been limited. This study explores the use of adaptive mixture independent component analysis (AMICA) to model multichannel electroencephalographic (EEG) data with a set of ICA models, each of which decomposes an adaptively learned portion of the data into statistically independent sources. We first show that AMICA can segment simulated quasi-stationary EEG data and accurately identify ground-truth sources and source model transitions. Next, we demonstrate that AMICA decomposition, applied to 6-13 channel scalp recordings from the CAP Sleep Database, can characterize sleep stage dynamics, allowing 75% accuracy in identifying transitions between six sleep stages without use of EEG power spectra. Finally, applied to 30-channel data from subjects in a driving simulator, AMICA identifies models that account for EEG during faster and slower response to driving challenges, respectively. We show changes in relative probabilities of these models allow effective prediction of subject response speed and moment-by-moment characterization of state changes within single trials. AMICA thus provides a generic unsupervised approach to identifying and modeling changes in EEG dynamics. Applied to continuous, unlabeled multichannel data, AMICA may likely be used to detect and study any changes in cognitive states.
神经科学领域越来越关注评估支持人类认知和行为流畅性的大脑网络活动的连续、内源性和非平稳动力学。这种非平稳性可能涉及活跃皮质源和大脑网络的不断变化的形成和溶解。然而,使用未标记的、非侵入性的大脑活动记录来识别和模拟这些大脑动力学变化的无监督方法,作为准稳定大脑状态之间的连续转变,一直受到限制。本研究探索了使用自适应混合独立成分分析 (AMICA) 来对多通道脑电图 (EEG) 数据建模,使用一组 ICA 模型,每个模型将自适应学习的部分数据分解为统计独立的源。我们首先表明 AMICA 可以分割模拟的准静态 EEG 数据,并准确识别真实源和源模型转换。接下来,我们证明 AMICA 分解应用于 CAP 睡眠数据库的 6-13 通道头皮记录,可以描述睡眠阶段动态,无需使用 EEG 功率谱即可实现 6 个睡眠阶段之间转换的 75%准确率。最后,应用于驾驶模拟器中受试者的 30 通道数据,AMICA 可以识别分别解释 EEG 在更快和更慢响应驾驶挑战期间的模型。我们表明这些模型的相对概率变化允许有效预测受试者的响应速度,并在单个试验内对状态变化进行逐点描述。因此,AMICA 提供了一种通用的无监督方法来识别和建模 EEG 动力学的变化。应用于连续的、未标记的多通道数据,AMICA 可能用于检测和研究认知状态的任何变化。