Suppr超能文献

用于心电图异常分类及其具有临床意义的进展和消退的诺瓦科标准。

The Novacode criteria for classification of ECG abnormalities and their clinically significant progression and regression.

作者信息

Rautaharju P M, Park L P, Chaitman B R, Rautaharju F, Zhang Z M

机构信息

Epidemiological Cardiology Research Center (EPICARE), the Department of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27104, USA.

出版信息

J Electrocardiol. 1998 Jul;31(3):157-87.

PMID:9682893
Abstract

Electrocardiographic (ECG) manifestations of clinical and subclinical cardiovascular disease are used as an important component in the evaluation of clinical trials, and there is an increasing demand for well-defined criteria for clinically significant evolution of ECG abnormalities. The Novacode ECG classification system provides a comprehensive hierarchical set of criteria for prevalent ECG abnormalities and for clinically significant serial ECG changes, both adverse and favorable, as a response to pharmacologic, surgical, and other interventions. These criteria are used to grade Q wave and ischemic abnormalities in order to achieve stable classification of both prevalent and incident myocardial infarctions by minimizing false classifications due to clinically insignificant ECG variations. This approach differs from the traditional Minnesota Code classification system, in which incident events are determined by changes in classification categories, with the application of additional elaborate validation rules to exclude frequent false classifications. Novacode hierarchy is so structured that for each abnormality, a general class is first determined with the simplest possible classification criteria and more specific abnormality subgroups are then classified with more elaborate criteria. This approach will satisfy differing needs of clinical trials for detail in classification. Explicit definition of ECG variables and condition statements for the classification criteria facilitate implementation of the Novacode with computer ECG programs.

摘要

临床和亚临床心血管疾病的心电图(ECG)表现被用作临床试验评估的重要组成部分,对于明确界定ECG异常具有临床意义的演变标准的需求也日益增加。诺瓦科德心电图分类系统为常见的ECG异常以及作为对药物、手术和其他干预措施的反应而出现的具有临床意义的系列ECG变化(包括不良和良性变化)提供了一套全面的分层标准。这些标准用于对Q波和缺血性异常进行分级,以便通过最大限度减少因临床意义不显著的ECG变化导致的错误分类,实现对既往和新发心肌梗死的稳定分类。这种方法不同于传统的明尼苏达编码分类系统,在传统系统中,新发事件是通过分类类别的变化来确定的,并应用额外的详细验证规则来排除频繁出现的错误分类。诺瓦科德分层结构的设计使得对于每一种异常情况,首先使用尽可能简单的分类标准确定一个一般类别,然后使用更详细的标准对更具体的异常亚组进行分类。这种方法将满足临床试验对分类细节的不同需求。ECG变量的明确定义以及分类标准的条件陈述便于通过计算机ECG程序实施诺瓦科德分类系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验