Shiavi R, Frigo C, Pedotti A
Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee 37235, USA.
Med Biol Eng Comput. 1998 Mar;36(2):171-8. doi: 10.1007/BF02510739.
The use of linear envelopes to represent the electromyographic (EMG) measurements obtained during locomotion has become common practice. Guidelines for designing envelope filters and specifying the minimum number of strides needed to produce valid EMG profiles have been developed. Electromyograms from eight major muscles of the lower leg are measured from five normal young adults during self-selected slow, free and fast walking speeds. 30 strides per task are measured. The 'ideal' EMG profile is defined from the ensemble average of the rectified EMG signal. An error measure is defined and used as a criterion to assess the appropriateness of various cut-off frequencies for envelope filters and the number of strides required for establishing a good EMG profile. It is found that between six and ten strides are needed to form a representative profile, and an envelope filter with a minimum cut-off frequency of approximately 9 Hz is necessary.