Suppr超能文献

两种算法在用于电诱发电位增强的非线性刺激伪迹消除中的收敛特性。

Convergence characteristics of two algorithms in non-linear stimulus artefact cancellation for electrically evoked potential enhancement.

作者信息

Parsa V, Parker P, Scott R

机构信息

Department of Electrical Engineering, University of New Brunswick, Fredericton, Canada.

出版信息

Med Biol Eng Comput. 1998 Mar;36(2):202-14. doi: 10.1007/BF02510744.

Abstract

Somatosensory evoked potentials (SEPs) are a sub-class of evoked potentials (EPs) that are very useful in diagnosing various neuromuscular disorders and in spinal cord and peripheral-nerve monitoring. Most often, the measurements of these signals are contaminated by stimulus-evoked artefact. Conventional stimulus-artifact (SA) reduction schemes are primarily hardware-based and rely on some form of input blanking during the SA phase. This procedure can result in partial SEP loss if the tail of the SA interferes with the SEP. Adaptive filters offer an attractive solution to this problem by iteratively reducing the SA waveform while leaving the SEP intact. Owing to the inherent non-linearities in the SA generation system, non-linear adaptive filters (NAFs) are most suitable. SA reduction using NAFs based on truncated second-order Volterra expansion series is investigated. The focus is on the performance of two main adaptation algorithms, the least mean square (LMS) and recursive least squares (RLS) algorithms, in the context of non-linear adaptive filtering. A comparison between the convergence and performance characteristics of these two algorithms is made by processing both simulated and experimental SA data. It is found that, in high artefact-to-noise ratio (ANR) SA cancellation, owing to the large eigenvalue spreads, the RLS-based NAF is more efficient than the LMS-based NAF. However, in low-ANR scenarios, the RLS- and LMS-based NAFs exhibit similar convergence properties, and the computational simplicity of the LMS-based NAFs makes them the preferred option.

摘要

体感诱发电位(SEPs)是诱发电位(EPs)的一个子类,在诊断各种神经肌肉疾病以及脊髓和周围神经监测中非常有用。这些信号的测量大多会受到刺激诱发伪迹的污染。传统的刺激伪迹(SA)减少方案主要基于硬件,并且在SA阶段依赖某种形式的输入消隐。如果SA的尾部干扰SEP,此过程可能会导致SEP部分丢失。自适应滤波器通过迭代减少SA波形同时保持SEP完整,为这个问题提供了一个有吸引力的解决方案。由于SA生成系统中固有的非线性,非线性自适应滤波器(NAFs)最为合适。研究了基于截断二阶沃尔泰拉展开级数的NAFs用于SA减少的情况。重点在于两种主要自适应算法,即最小均方(LMS)算法和递归最小二乘(RLS)算法在非线性自适应滤波中的性能。通过处理模拟和实验SA数据,对这两种算法的收敛和性能特性进行了比较。结果发现,在高伪迹噪声比(ANR)的SA消除中,由于特征值扩散较大,基于RLS的NAF比基于LMS的NAF更有效。然而,在低ANR场景中,基于RLS和LMS的NAF表现出相似的收敛特性,并且基于LMS的NAF计算简单,使其成为首选选项。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验