Suppr超能文献

通过选择性整合实现可靠的视差估计。

Reliable disparity estimation through selective integration.

作者信息

Gray M S, Pouget A, Zemel R S, Nowlan S J, Sejnowski T J

机构信息

Department of Cognitive Science, University of California, San Diego, La Jolla, USA.

出版信息

Vis Neurosci. 1998 May-Jun;15(3):511-28. doi: 10.1017/s0952523898153129.

Abstract

A network model of disparity estimation was developed based on disparity-selective neurons, such as those found in the early stages of processing in the visual cortex. The model accurately estimated multiple disparities in regions, which may be caused by transparency or occlusion. The selective integration of reliable local estimates enabled the network to generate accurate disparity estimates on normal and transparent random-dot stereograms. The model was consistent with human psychophysical results on the effects of spatial-frequency filtering on disparity sensitivity. The responses of neurons in macaque area V2 to random-dot stereograms are consistent with the prediction of the model that a subset of neurons responsible for disparity selection should be sensitive to disparity gradients.

摘要

基于视差选择性神经元(如在视觉皮层处理早期阶段发现的那些神经元)开发了一种视差估计网络模型。该模型能够准确估计区域中的多个视差,这些视差可能由透明度或遮挡引起。可靠局部估计的选择性整合使该网络能够在正常和透明随机点立体图上生成准确的视差估计。该模型与人类关于空间频率滤波对视差敏感性影响的心理物理学结果一致。猕猴V2区神经元对随机点立体图的反应与该模型的预测一致,即负责视差选择的神经元子集应对视差梯度敏感。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验