Couly G, Grapin-Botton A, Coltey P, Ruhin B, Le Douarin N M
Institut d'Embryologie Cellulaire et Moléculaire du CNRS et du Collège de France, 94736 Nogent-sur-Marne Cedex, France.
Development. 1998 Sep;125(17):3445-59. doi: 10.1242/dev.125.17.3445.
In addition to pigment cells, and neural and endocrine derivatives, the neural crest is characterized by its ability to yield mesenchymal cells. In amniotes, this property is restricted to the cephalic region from the mid-diencephalon to the end of rhombomere 8 (level of somites 4/5). The cephalic neural crest is divided into two domains: an anterior region corresponding to the diencephalon, mesencephalon and metencephalon (r1, r2) in which expression of Hox genes is never observed, and a posterior domain in which neural crest cells exhibit (with a few exceptions) the same Hox code as the rhombomeres from which they originate. By altering the normal distribution of neural crest cells in the branchial arches through appropriate embryonic manipulations, we have investigated the relationships between Hox gene expression and the level of plasticity that neural crest cells display when they are led to migrate to an ectopic environment. We made the following observations. (i) Hox gene expression is not altered in neural crest cells by their transposition to ectopic sites. (ii) Expression of Hox genes by the BA ectoderm does not depend upon an induction by the neural crest. This second finding further supports the concept of segmentation of the cephalic ectoderm into ectomeres (Couly and Le Douarin, 1990). According to this concept, metameres can be defined in large bands of ectoderm including not only the CNS and the neural crest but also the corresponding superficial ectoderm fated to cover craniofacial primordia. (iii) The construction of a lower jaw requires the environment provided by the ectomesodermal components of BA1 or BA2 associated with the Hox gene non-expressing neural crest cells. Hox gene-expressing neural crest cells are unable to yield the lower jaw apparatus including the entoglossum and basihyal even in the BA1 environment. In contrast, the posterior part of the hyoid bone can be constructed by any region of the neural crest cells whether or not they are under the regulatory control of Hox genes. Such is also the case for the neural and connective tissues (including those comprising the cardiovascular system) of neural crest origin, upon which no segmental restriction is imposed. The latter finding confirms the plasticity observed 24 years ago (Le Douarin and Teillet, 1974) for the precursors of the PNS.
除色素细胞、神经和内分泌衍生物外,神经嵴的特点还在于其产生间充质细胞的能力。在羊膜动物中,这种特性仅限于从中脑间脑到菱脑节8末端(体节4/5水平)的头部区域。头部神经嵴分为两个区域:一个前部区域对应于间脑、中脑和后脑(r1、r2),在该区域从未观察到Hox基因的表达;另一个后部区域,其中神经嵴细胞(少数例外情况除外)表现出与其起源的菱脑节相同的Hox编码。通过适当的胚胎操作改变鳃弓中神经嵴细胞的正常分布,我们研究了Hox基因表达与神经嵴细胞在被引导迁移到异位环境时所表现出的可塑性水平之间的关系。我们有以下观察结果。(i)神经嵴细胞转位到异位部位时,其Hox基因表达不会改变。(ii)鳃弓外胚层的Hox基因表达不依赖于神经嵴的诱导。这一发现进一步支持了将头部外胚层分割为外胚层节段的概念(库利和勒杜林,1990年)。根据这一概念,体节可以在外胚层的大片区域中定义,这些区域不仅包括中枢神经系统和神经嵴,还包括注定覆盖颅面原基的相应表面外胚层。(iii)下颌的构建需要由与不表达Hox基因的神经嵴细胞相关的鳃弓1或鳃弓2的外胚层中胚层成分提供的环境。即使在鳃弓1环境中,表达Hox基因的神经嵴细胞也无法产生包括内舌和基舌骨在内的下颌装置。相反,舌骨的后部可以由神经嵴细胞的任何区域构建,无论它们是否受Hox基因的调控。神经嵴起源的神经和结缔组织(包括构成心血管系统的组织)也是如此,对其没有节段性限制。后一发现证实了24年前(勒杜林和泰耶,1974年)对周围神经系统前体所观察到的可塑性。