Suppr超能文献

Characterization of a sodium-dependent transport system for butyrobetaine into rat liver plasma membrane vesicles.

作者信息

Berardi S, Stieger B, Wachter S, O'Neill B, Krahenbühl S

机构信息

Department of Internal Medicine, University Hospital, Zürich, Switzerland.

出版信息

Hepatology. 1998 Aug;28(2):521-5. doi: 10.1002/hep.510280232.

Abstract

Butyrobetaine transport into the liver was studied using isolated rat hepatocyte plasma membrane vesicles. In the presence of a sodium chloride gradient, an overshoot could be observed, indicating active sodium-dependent transport. A similar overshoot was recorded in the presence of lithium, but not of potassium, cesium, or choline chloride. Investigation of several sodium salts revealed that an overshoot could only be observed in the presence of chloride, but not of nitrate, thiocyanate, sulfate, or gluconate. An osmolarity plot in the presence of sodium chloride revealed a slope different from zero and a positive intercept, indicating active transport and nonspecific binding, respectively. In agreement with the osmolarity plot, the kinetic characterization of butyrobetaine transport revealed a binding and a saturable component. The saturable component could be described by Michaelis-Menten kinetics, with a Km of 4.88 +/- 0.70 mmol/L and a Vmax of 4.16 +/- 0.73 picomoles per milligram of protein per second. Butyrobetaine transport could be inhibited significantly (30%) by 250 micromol/L propionylcarnitine, but not by D- or L-carnitine, other acylcarnitines (acetylcarnitine, isovalerylcarnitine, palmitoylcarnitine), trimethyllysine, or quinine. Butyrobetaine transport activity was also expressed in Xenopus laevis oocytes by injecting mRNA isolated from rat liver or kidney. After 5 days of cultivation, the endogenous butyrobetaine transport activity was increased by 82% in oocytes injected with liver mRNA and by 99% in oocytes injected with kidney mRNA. The studies show that butyrobetaine is transported actively across the basolateral plasma membrane of hepatocytes and that this transport is driven by sodium and chloride gradients. This transport is quite specific for butyrobetaine and is not rate-limiting for carnitine biosynthesis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验